Spaces:
Runtime error
Runtime error
File size: 44,978 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 |
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from typing import List
import pandas as pd
from transformers import AddedToken, TapexTokenizer
from transformers.models.tapex.tokenization_tapex import VOCAB_FILES_NAMES
from transformers.testing_utils import is_pt_tf_cross_test, require_pandas, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_pandas
class TapexTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = TapexTokenizer
test_rust_tokenizer = False
from_pretrained_kwargs = {"cls_token": "<s>"}
test_seq2seq = False
def setUp(self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
# fmt: off
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>"] # noqa: E231
# fmt: on
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_table(self, tokenizer, length=5):
toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))]
if length == 0:
data = {}
else:
data = {toks[0]: [toks[tok] for tok in range(1, length)]}
table = pd.DataFrame.from_dict(data)
return table
def get_table_and_query(self, tokenizer, length=5):
toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))]
table = self.get_table(tokenizer, length=length - 3)
query = " ".join(toks[:3])
return table, query
def get_clean_sequence(
self,
tokenizer,
with_prefix_space=False,
max_length=20,
min_length=5,
empty_table: bool = False,
add_special_tokens: bool = True,
return_table_and_query: bool = False,
):
toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))]
if empty_table:
table = pd.DataFrame.from_dict({})
query = " ".join(toks[:min_length])
else:
data = {toks[0]: [toks[tok] for tok in range(1, min_length - 3)]}
table = pd.DataFrame.from_dict(data)
query = " ".join(toks[:3])
output_ids = tokenizer.encode(table, query, add_special_tokens=add_special_tokens)
output_txt = tokenizer.decode(output_ids)
if len(output_ids) < min_length:
raise ValueError("Update the code to generate the sequences so that they are larger")
if len(output_ids) > max_length:
raise ValueError("Update the code to generate the sequences so that they are smaller")
if return_table_and_query:
return output_txt, output_ids, table, query
return output_txt, output_ids
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer_roberta(self):
tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower newer"
bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def roberta_dict_integration_testing(self):
tokenizer = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2])
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False),
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2],
)
def test_add_tokens_tokenizer(self):
tokenizers: List[TapexTokenizer] = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
vocab_size = tokenizer.vocab_size
all_size = len(tokenizer)
self.assertNotEqual(vocab_size, 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
added_toks = tokenizer.add_tokens(new_toks)
vocab_size_2 = tokenizer.vocab_size
all_size_2 = len(tokenizer)
self.assertNotEqual(vocab_size_2, 0)
self.assertEqual(vocab_size, vocab_size_2)
self.assertEqual(added_toks, len(new_toks))
self.assertEqual(all_size_2, all_size + len(new_toks))
tokens = tokenizer.encode(table, "aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
self.assertGreaterEqual(len(tokens), 4)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
vocab_size_3 = tokenizer.vocab_size
all_size_3 = len(tokenizer)
self.assertNotEqual(vocab_size_3, 0)
self.assertEqual(vocab_size, vocab_size_3)
self.assertEqual(added_toks_2, len(new_toks_2))
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
tokens = tokenizer.encode(
table,
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l",
add_special_tokens=False,
)
self.assertGreaterEqual(len(tokens), 6)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[0], tokens[1])
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokens[-3])
self.assertEqual(tokens[0], tokenizer.eos_token_id)
self.assertEqual(tokens[-2], tokenizer.pad_token_id)
def test_token_type_ids(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
empty_table = self.get_table(tokenizer, length=0)
seq_0 = "Test this method."
# We want to have sequence 0 and sequence 1 are tagged
# respectively with 0 and 1 token_ids
# (regardless of whether the model use token type ids)
# We use this assumption in the QA pipeline among other place
output = tokenizer(empty_table, seq_0, return_token_type_ids=True)
# Assert that the token type IDs have the same length as the input IDs
self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"]))
self.assertIn(0, output["token_type_ids"])
def test_add_special_tokens(self):
tokenizers: List[TapexTokenizer] = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
input_table = self.get_table(tokenizer, length=0)
special_token = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token})
encoded_special_token = tokenizer.encode(input_table, special_token, add_special_tokens=False)
self.assertEqual(len(encoded_special_token), 1)
decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True)
self.assertTrue(special_token not in decoded)
def test_batch_encode_plus_overflowing_tokens(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
table = self.get_table(tokenizer, length=10)
string_sequences = ["Testing the prepare_for_model method.", "Test"]
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
tokenizer.batch_encode_plus(
table, string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3
)
@is_pt_tf_cross_test
def test_batch_encode_plus_tensors(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
table = self.get_table(tokenizer, length=0)
# A Tensor cannot be build by sequences which are not the same size
self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="pt")
self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="tf")
if tokenizer.pad_token_id is None:
self.assertRaises(
ValueError,
tokenizer.batch_encode_plus,
table,
sequences,
padding=True,
return_tensors="pt",
)
self.assertRaises(
ValueError,
tokenizer.batch_encode_plus,
table,
sequences,
padding="longest",
return_tensors="tf",
)
else:
pytorch_tensor = tokenizer.batch_encode_plus(table, sequences, padding=True, return_tensors="pt")
tensorflow_tensor = tokenizer.batch_encode_plus(
table, sequences, padding="longest", return_tensors="tf"
)
encoded_sequences = tokenizer.batch_encode_plus(table, sequences, padding=True)
for key in encoded_sequences.keys():
pytorch_value = pytorch_tensor[key].tolist()
tensorflow_value = tensorflow_tensor[key].numpy().tolist()
encoded_value = encoded_sequences[key]
self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
# Test not batched
table = self.get_table(tokenizer, length=0)
encoded_sequences_1 = tokenizer.encode_plus(table, sequences[0])
encoded_sequences_2 = tokenizer(table, sequences[0])
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
# Test not batched pairs
table = self.get_table(tokenizer, length=10)
encoded_sequences_1 = tokenizer.encode_plus(table, sequences[1])
encoded_sequences_2 = tokenizer(table, sequences[1])
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
# Test batched
table = self.get_table(tokenizer, length=0)
encoded_sequences_1 = tokenizer.batch_encode_plus(table, sequences)
encoded_sequences_2 = tokenizer(table, sequences)
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
def test_internal_consistency(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
input_text, output_text = self.get_input_output_texts(tokenizer)
tokens = tokenizer.tokenize(input_text)
ids = tokenizer.convert_tokens_to_ids(tokens)
ids_2 = tokenizer.encode(table, input_text, add_special_tokens=False)
self.assertListEqual(ids, ids_2)
tokens_2 = tokenizer.convert_ids_to_tokens(ids)
self.assertNotEqual(len(tokens_2), 0)
text_2 = tokenizer.decode(ids)
self.assertIsInstance(text_2, str)
self.assertEqual(text_2, output_text)
def test_save_and_load_tokenizer(self):
# safety check on max_len default value so we are sure the test works
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
self.assertNotEqual(tokenizer.model_max_length, 42)
# Now let's start the test
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
table = self.get_table(tokenizer, length=0)
tmpdirname = tempfile.mkdtemp()
sample_text = " He is very happy, UNwant\u00E9d,running"
before_tokens = tokenizer.encode(table, sample_text, add_special_tokens=False)
before_vocab = tokenizer.get_vocab()
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.encode(table, sample_text, add_special_tokens=False)
after_vocab = after_tokenizer.get_vocab()
self.assertListEqual(before_tokens, after_tokens)
self.assertDictEqual(before_vocab, after_vocab)
shutil.rmtree(tmpdirname)
def test_number_of_added_tokens(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table, query = self.get_table_and_query(tokenizer)
sequences = tokenizer.encode(table, query, add_special_tokens=False)
attached_sequences = tokenizer.encode(table, query, add_special_tokens=True)
self.assertEqual(2, len(attached_sequences) - len(sequences))
@unittest.skip("TAPEX cannot handle `prepare_for_model` without passing by `encode_plus` or `batch_encode_plus`")
def test_prepare_for_model(self):
pass
@unittest.skip("TAPEX tokenizer does not support pairs.")
def test_maximum_encoding_length_pair_input(self):
pass
@unittest.skip("TAPEX tokenizer does not support pairs.")
def test_maximum_encoding_length_single_input(self):
pass
@unittest.skip("Not implemented")
def test_right_and_left_truncation(self):
pass
def test_encode_decode_with_spaces(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)]
tokenizer.add_tokens(new_toks)
input = "[ABC][DEF][ABC][DEF]"
if self.space_between_special_tokens:
output = "[ABC] [DEF] [ABC] [DEF]"
else:
output = input
encoded = tokenizer.encode(table, input, add_special_tokens=False)
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
self.assertIn(decoded, [output, output.lower()])
def test_tokenize_special_tokens(self):
"""Test `tokenize` with special tokens."""
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
SPECIAL_TOKEN_1 = "[SPECIAL_TOKEN_1]"
SPECIAL_TOKEN_2 = "[SPECIAL_TOKEN_2]"
# TODO:
# Can we combine `unique_no_split_tokens` and `all_special_tokens`(and properties related to it)
# with one variable(property) for a better maintainability?
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True)
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]})
token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1)
token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2)
self.assertEqual(len(token_1), 1)
self.assertEqual(len(token_2), 1)
self.assertEqual(token_1[0], SPECIAL_TOKEN_1)
self.assertEqual(token_2[0], SPECIAL_TOKEN_2)
def test_special_tokens_mask(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequence_0 = "Encode this."
# Testing single inputs
encoded_sequence = tokenizer.encode(table, sequence_0, add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(
table, sequence_0, add_special_tokens=True, return_special_tokens_mask=True
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
self.assertEqual(encoded_sequence, filtered_sequence)
def test_padding_to_max_length(self):
"""We keep this test for backward compatibility but it should be removed when `pad_to_max_length` will be deprecated"""
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer)
sequence = "Sequence"
padding_size = 10
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequence)
padding_idx = tokenizer.pad_token_id
# Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
table,
sequence,
max_length=sequence_length + padding_size,
pad_to_max_length=True,
)
padded_sequence_length = len(padded_sequence)
self.assertEqual(sequence_length + padding_size, padded_sequence_length)
self.assertListEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
# Check that nothing is done when a maximum length is not specified
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(table, sequence, pad_to_max_length=True)
padded_sequence_right_length = len(padded_sequence_right)
self.assertEqual(sequence_length, padded_sequence_right_length)
self.assertListEqual(encoded_sequence, padded_sequence_right)
def test_padding_to_multiple_of(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
if tokenizer.pad_token is None:
self.skipTest("No padding token.")
else:
empty_tokens = tokenizer(table, padding=True, pad_to_multiple_of=8)
normal_tokens = tokenizer(table, "This is a sample input", padding=True, pad_to_multiple_of=8)
for key, value in empty_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
normal_tokens = tokenizer(table, "This", pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# Should also work with truncation
normal_tokens = tokenizer(table, "This", padding=True, truncation=True, pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
def test_right_and_left_padding(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequence = "Sequence"
padding_size = 10
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequence)
padding_idx = tokenizer.pad_token_id
# RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
table, sequence, max_length=sequence_length + padding_size, padding="max_length"
)
padded_sequence_length = len(padded_sequence)
self.assertEqual(sequence_length + padding_size, padded_sequence_length)
self.assertListEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
# LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "left"
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
table, sequence, max_length=sequence_length + padding_size, padding="max_length"
)
padded_sequence_length = len(padded_sequence)
self.assertEqual(sequence_length + padding_size, padded_sequence_length)
self.assertListEqual([padding_idx] * padding_size + encoded_sequence, padded_sequence)
# RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(table, sequence, padding=True)
padded_sequence_right_length = len(padded_sequence_right)
self.assertEqual(sequence_length, padded_sequence_right_length)
self.assertListEqual(encoded_sequence, padded_sequence_right)
tokenizer.padding_side = "left"
padded_sequence_left = tokenizer.encode(table, sequence, padding="longest")
padded_sequence_left_length = len(padded_sequence_left)
self.assertEqual(sequence_length, padded_sequence_left_length)
self.assertListEqual(encoded_sequence, padded_sequence_left)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(table, sequence)
padded_sequence_right_length = len(padded_sequence_right)
self.assertEqual(sequence_length, padded_sequence_right_length)
self.assertListEqual(encoded_sequence, padded_sequence_right)
tokenizer.padding_side = "left"
padded_sequence_left = tokenizer.encode(table, sequence, padding=False)
padded_sequence_left_length = len(padded_sequence_left)
self.assertEqual(sequence_length, padded_sequence_left_length)
self.assertListEqual(encoded_sequence, padded_sequence_left)
def test_encode_plus_with_padding(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequence = "Sequence"
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequence)
padding_size = 10
padding_idx = tokenizer.pad_token_id
token_type_padding_idx = tokenizer.pad_token_type_id
encoded_sequence = tokenizer.encode_plus(table, sequence, return_special_tokens_mask=True)
input_ids = encoded_sequence["input_ids"]
special_tokens_mask = encoded_sequence["special_tokens_mask"]
sequence_length = len(input_ids)
# Test 'longest' and 'no_padding' don't do anything
tokenizer.padding_side = "right"
not_padded_sequence = tokenizer.encode_plus(
table,
sequence,
padding=False,
return_special_tokens_mask=True,
)
not_padded_input_ids = not_padded_sequence["input_ids"]
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
not_padded_sequence_length = len(not_padded_input_ids)
self.assertEqual(sequence_length, not_padded_sequence_length)
self.assertListEqual(input_ids, not_padded_input_ids)
self.assertListEqual(special_tokens_mask, not_padded_special_tokens_mask)
not_padded_sequence = tokenizer.encode_plus(
table,
sequence,
padding=False,
return_special_tokens_mask=True,
)
not_padded_input_ids = not_padded_sequence["input_ids"]
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
not_padded_sequence_length = len(not_padded_input_ids)
self.assertEqual(sequence_length, not_padded_sequence_length)
self.assertListEqual(input_ids, not_padded_input_ids)
self.assertListEqual(special_tokens_mask, not_padded_special_tokens_mask)
# Test right padding
tokenizer.padding_side = "right"
right_padded_sequence = tokenizer.encode_plus(
table,
sequence,
max_length=sequence_length + padding_size,
padding="max_length",
return_special_tokens_mask=True,
)
right_padded_input_ids = right_padded_sequence["input_ids"]
right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
right_padded_sequence_length = len(right_padded_input_ids)
self.assertEqual(sequence_length + padding_size, right_padded_sequence_length)
self.assertListEqual(input_ids + [padding_idx] * padding_size, right_padded_input_ids)
self.assertListEqual(special_tokens_mask + [1] * padding_size, right_padded_special_tokens_mask)
# Test left padding
tokenizer.padding_side = "left"
left_padded_sequence = tokenizer.encode_plus(
table,
sequence,
max_length=sequence_length + padding_size,
padding="max_length",
return_special_tokens_mask=True,
)
left_padded_input_ids = left_padded_sequence["input_ids"]
left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
left_padded_sequence_length = len(left_padded_input_ids)
self.assertEqual(sequence_length + padding_size, left_padded_sequence_length)
self.assertListEqual([padding_idx] * padding_size + input_ids, left_padded_input_ids)
self.assertListEqual([1] * padding_size + special_tokens_mask, left_padded_special_tokens_mask)
if "token_type_ids" in tokenizer.model_input_names:
token_type_ids = encoded_sequence["token_type_ids"]
left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
right_padded_token_type_ids = right_padded_sequence["token_type_ids"]
self.assertListEqual(
(token_type_ids + [[token_type_padding_idx] * 7] * padding_size, right_padded_token_type_ids)
)
self.assertListEqual(
[[token_type_padding_idx] * 7] * padding_size + token_type_ids, left_padded_token_type_ids
)
if "attention_mask" in tokenizer.model_input_names:
attention_mask = encoded_sequence["attention_mask"]
right_padded_attention_mask = right_padded_sequence["attention_mask"]
left_padded_attention_mask = left_padded_sequence["attention_mask"]
self.assertListEqual(attention_mask + [0] * padding_size, right_padded_attention_mask)
self.assertListEqual([0] * padding_size + attention_mask, left_padded_attention_mask)
def test_batch_encode_plus_padding(self):
# Test that padded sequences are equivalent between batch_encode_plus and encode_plus
# Right padding tests
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
max_length = 100
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequences)
encoded_sequences = [
tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length")
for sequence in sequences
]
encoded_sequences_batch = tokenizer.batch_encode_plus(
table, sequences, max_length=max_length, padding="max_length"
)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
# Left padding tests
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
tokenizer.padding_side = "left"
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
max_length = 100
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequences)
encoded_sequences = [
tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length")
for sequence in sequences
]
encoded_sequences_batch = tokenizer.batch_encode_plus(
table, sequences, max_length=max_length, padding="max_length"
)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
def test_batch_encode_plus_batch_sequence_length(self):
# Tests that all encoded values have the correct size
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
encoded_sequences = [tokenizer.encode_plus(table, sequence) for sequence in sequences]
encoded_sequences_batch = tokenizer.batch_encode_plus(table, sequences, padding=False)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
maximum_length = len(
max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
)
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequences)
encoded_sequences_padded = [
tokenizer.encode_plus(table, sequence, max_length=maximum_length, padding="max_length")
for sequence in sequences
]
encoded_sequences_batch_padded = tokenizer.batch_encode_plus(table, sequences, padding=True)
self.assertListEqual(
encoded_sequences_padded,
self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
)
# check 'longest' is unsensitive to a max length
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=True)
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
table, sequences, max_length=maximum_length + 10, padding="longest"
)
for key in encoded_sequences_batch_padded_1.keys():
self.assertListEqual(
encoded_sequences_batch_padded_1[key],
encoded_sequences_batch_padded_2[key],
)
# check 'no_padding' is unsensitive to a max length
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=False)
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
table, sequences, max_length=maximum_length + 10, padding=False
)
for key in encoded_sequences_batch_padded_1.keys():
self.assertListEqual(
encoded_sequences_batch_padded_1[key],
encoded_sequences_batch_padded_2[key],
)
def test_special_tokens_mask_input_pairs(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
sequence_0 = "Encode this."
empty_table = self.get_table(tokenizer, length=0)
table = self.get_table(tokenizer, length=10)
encoded_sequence = tokenizer.encode(empty_table, sequence_0, add_special_tokens=False)
number_of_tokens = len(encoded_sequence)
encoded_sequence += tokenizer.encode(table, "", add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(
table,
sequence_0,
add_special_tokens=True,
return_special_tokens_mask=True,
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
]
# NOTE: as TAPEX adds a space between a table and a sequence, we need to remove it
# in order to have equivalent results with encoding an empty table or empty sequence
del filtered_sequence[number_of_tokens + 1]
filtered_sequence = [x for x in filtered_sequence if x is not None]
print("Encoded sequence:", encoded_sequence)
print("Filtered sequence:", filtered_sequence)
self.assertEqual(encoded_sequence, filtered_sequence)
@slow
def test_full_tokenizer(self):
question = "Greece held its last Summer Olympics in 2004"
table_dict = {
"header": ["Year", "City", "Country", "Nations"],
"rows": [
[1896, "Athens", "Greece", 14],
[1900, "Paris", "France", 24],
[1904, "St. Louis", "USA", 12],
[2004, "Athens", "Greece", 201],
[2008, "Beijing", "China", 204],
[2012, "London", "UK", 204],
],
}
table = pd.DataFrame.from_dict(table_dict["rows"])
table.columns = table_dict["header"]
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
encoding = tokenizer(table, question)
# fmt: off
expected_results = {'input_ids': [0, 821, 5314, 1755, 547, 63, 94, 1035, 1021, 31434, 2857, 11, 4482, 11311, 4832, 76, 1721, 343, 1721, 247, 1721, 3949, 3236, 112, 4832, 42773, 1721, 23, 27859, 1721, 821, 5314, 1755, 1721, 501, 3236, 132, 4832, 23137, 1721, 2242, 354, 1721, 6664, 2389, 1721, 706, 3236, 155, 4832, 42224, 1721, 1690, 4, 26120, 354, 1721, 201, 102, 1721, 316, 3236, 204, 4832, 4482, 1721, 23, 27859, 1721, 821, 5314, 1755, 1721, 21458, 3236, 195, 4832, 2266, 1721, 28, 40049, 1721, 1855, 1243, 1721, 28325, 3236, 231, 4832, 1125, 1721, 784, 24639, 1721, 1717, 330, 1721, 28325, 2]}
# fmt: on
self.assertListEqual(encoding.input_ids, expected_results["input_ids"])
def test_tokenizer_as_target(self):
# by default the tokenizer do_lower_case
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base")
answer_text = "tapex is a good model!"
expected_src_tokens = [0, 90, 5776, 1178, 16, 10, 205, 1421, 328, 2]
answer_encoding = tokenizer(answer=answer_text)
self.assertListEqual(answer_encoding.input_ids, expected_src_tokens)
@slow
def test_tokenizer_lower_case(self):
cased_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base", do_lower_case=False)
uncased_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base", do_lower_case=True)
answer_text = "Beijing, London, Paris"
answer_text_lower = "beijing, london, paris"
self.assertNotEqual(
cased_tokenizer(answer=answer_text).input_ids, uncased_tokenizer(answer=answer_text).input_ids
)
self.assertEqual(
cased_tokenizer(answer=answer_text_lower).input_ids,
uncased_tokenizer(answer=answer_text).input_ids,
)
# batched encoding assert
self.assertNotEqual(
cased_tokenizer(answer=[answer_text]).input_ids, uncased_tokenizer(answer=[answer_text]).input_ids
)
self.assertEqual(
cased_tokenizer(answer=[answer_text_lower]).input_ids,
uncased_tokenizer(answer=[answer_text]).input_ids,
)
# test input encoding lowercase
question = "Greece held its last Summer Olympics in 2004"
table_dict = {
"header": ["Year", "City", "Country", "Nations"],
"rows": [
[1896, "Athens", "Greece", 14],
[1900, "Paris", "France", 24],
[1904, "St. Louis", "USA", 12],
[2004, "Athens", "Greece", 201],
[2008, "Beijing", "China", 204],
[2012, "London", "UK", 204],
],
}
table = pd.DataFrame.from_dict(table_dict["rows"])
table.columns = table_dict["header"]
self.assertNotEqual(
cased_tokenizer(table=table, query=question).input_ids,
uncased_tokenizer(table=table, query=question).input_ids,
)
|