File size: 7,081 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

from ...test_image_processing_common import ImageProcessingSavingTestMixin


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import Swin2SRImageProcessor
    from transformers.image_transforms import get_image_size


class Swin2SRImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_rescale=True,
        rescale_factor=1 / 255,
        do_pad=True,
        pad_size=8,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad
        self.pad_size = pad_size

    def prepare_image_processor_dict(self):
        return {
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
            "pad_size": self.pad_size,
        }

    def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

        if equal_resolution:
            image_inputs = []
            for i in range(self.batch_size):
                image_inputs.append(
                    np.random.randint(
                        255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
                    )
                )
        else:
            image_inputs = []
            for i in range(self.batch_size):
                width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
                image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))

        if not numpify and not torchify:
            # PIL expects the channel dimension as last dimension
            image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        if torchify:
            image_inputs = [torch.from_numpy(x) for x in image_inputs]

        return image_inputs


@require_torch
@require_vision
class Swin2SRImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = Swin2SRImageProcessor if is_vision_available() else None

    def setUp(self):
        self.image_processor_tester = Swin2SRImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_rescale"))
        self.assertTrue(hasattr(image_processor, "rescale_factor"))
        self.assertTrue(hasattr(image_processor, "do_pad"))
        self.assertTrue(hasattr(image_processor, "pad_size"))

    def test_batch_feature(self):
        pass

    def calculate_expected_size(self, image):
        old_height, old_width = get_image_size(image)
        size = self.image_processor_tester.pad_size

        pad_height = (old_height // size + 1) * size - old_height
        pad_width = (old_width // size + 1) * size - old_width
        return old_height + pad_height, old_width + pad_width

    def test_call_pil(self):
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
        expected_height, expected_width = self.calculate_expected_size(np.array(image_inputs[0]))
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
        expected_height, expected_width = self.calculate_expected_size(image_inputs[0])
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_pytorch(self):
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
        # create random PyTorch tensors
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
        expected_height, expected_width = self.calculate_expected_size(image_inputs[0])
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )