File size: 18,843 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# coding=utf-8
# Copyright 2021-2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the SpeechT5 feature extractors."""

import itertools
import random
import unittest

import numpy as np

from transformers import BatchFeature, is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available

from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin


if is_speech_available():
    from transformers import SpeechT5FeatureExtractor

if is_torch_available():
    import torch


global_rng = random.Random()


def floats_list(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    values = []
    for batch_idx in range(shape[0]):
        values.append([])
        for _ in range(shape[1]):
            values[-1].append(rng.random() * scale)

    return values


@require_torch
class SpeechT5FeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        min_seq_length=400,
        max_seq_length=2000,
        feature_size=1,
        padding_value=0.0,
        sampling_rate=16000,
        do_normalize=True,
        num_mel_bins=80,
        hop_length=16,
        win_length=64,
        win_function="hann_window",
        frame_signal_scale=1.0,
        fmin=80,
        fmax=7600,
        mel_floor=1e-10,
        reduction_factor=2,
        return_attention_mask=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.min_seq_length = min_seq_length
        self.max_seq_length = max_seq_length
        self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
        self.feature_size = feature_size
        self.padding_value = padding_value
        self.sampling_rate = sampling_rate
        self.do_normalize = do_normalize
        self.num_mel_bins = num_mel_bins
        self.hop_length = hop_length
        self.win_length = win_length
        self.win_function = win_function
        self.frame_signal_scale = frame_signal_scale
        self.fmin = fmin
        self.fmax = fmax
        self.mel_floor = mel_floor
        self.reduction_factor = reduction_factor
        self.return_attention_mask = return_attention_mask

    def prepare_feat_extract_dict(self):
        return {
            "feature_size": self.feature_size,
            "padding_value": self.padding_value,
            "sampling_rate": self.sampling_rate,
            "do_normalize": self.do_normalize,
            "num_mel_bins": self.num_mel_bins,
            "hop_length": self.hop_length,
            "win_length": self.win_length,
            "win_function": self.win_function,
            "frame_signal_scale": self.frame_signal_scale,
            "fmin": self.fmin,
            "fmax": self.fmax,
            "mel_floor": self.mel_floor,
            "reduction_factor": self.reduction_factor,
            "return_attention_mask": self.return_attention_mask,
        }

    def prepare_inputs_for_common(self, equal_length=False, numpify=False):
        def _flatten(list_of_lists):
            return list(itertools.chain(*list_of_lists))

        if equal_length:
            speech_inputs = floats_list((self.batch_size, self.max_seq_length))
        else:
            # make sure that inputs increase in size
            speech_inputs = [
                _flatten(floats_list((x, self.feature_size)))
                for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
            ]

        if numpify:
            speech_inputs = [np.asarray(x) for x in speech_inputs]

        return speech_inputs

    def prepare_inputs_for_target(self, equal_length=False, numpify=False):
        if equal_length:
            speech_inputs = [floats_list((self.max_seq_length, self.num_mel_bins)) for _ in range(self.batch_size)]
        else:
            # make sure that inputs increase in size
            speech_inputs = [
                floats_list((x, self.num_mel_bins))
                for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
            ]

        if numpify:
            speech_inputs = [np.asarray(x) for x in speech_inputs]

        return speech_inputs


@require_torch
@require_torchaudio
class SpeechT5FeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
    feature_extraction_class = SpeechT5FeatureExtractor if is_speech_available() else None

    def setUp(self):
        self.feat_extract_tester = SpeechT5FeatureExtractionTester(self)

    def _check_zero_mean_unit_variance(self, input_vector):
        self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3))
        self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3))

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        # create three inputs of length 800, 1000, and 1200
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        # Test not batched input
        encoded_sequences_1 = feat_extract(speech_inputs[0], return_tensors="np").input_values
        encoded_sequences_2 = feat_extract(np_speech_inputs[0], return_tensors="np").input_values
        self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))

        # Test batched
        encoded_sequences_1 = feat_extract(speech_inputs, return_tensors="np").input_values
        encoded_sequences_2 = feat_extract(np_speech_inputs, return_tensors="np").input_values
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

    def test_zero_mean_unit_variance_normalization_np(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]

        paddings = ["longest", "max_length", "do_not_pad"]
        max_lengths = [None, 1600, None]
        for max_length, padding in zip(max_lengths, paddings):
            processed = feat_extract(speech_inputs, padding=padding, max_length=max_length, return_tensors="np")
            input_values = processed.input_values

            self._check_zero_mean_unit_variance(input_values[0][:800])
            self.assertTrue(input_values[0][800:].sum() < 1e-6)
            self._check_zero_mean_unit_variance(input_values[1][:1000])
            self.assertTrue(input_values[0][1000:].sum() < 1e-6)
            self._check_zero_mean_unit_variance(input_values[2][:1200])

    def test_zero_mean_unit_variance_normalization(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        lengths = range(800, 1400, 200)
        speech_inputs = [floats_list((1, x))[0] for x in lengths]

        paddings = ["longest", "max_length", "do_not_pad"]
        max_lengths = [None, 1600, None]

        for max_length, padding in zip(max_lengths, paddings):
            processed = feat_extract(speech_inputs, max_length=max_length, padding=padding)
            input_values = processed.input_values

            self._check_zero_mean_unit_variance(input_values[0][:800])
            self._check_zero_mean_unit_variance(input_values[1][:1000])
            self._check_zero_mean_unit_variance(input_values[2][:1200])

    def test_zero_mean_unit_variance_normalization_trunc_np_max_length(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = feat_extract(
            speech_inputs, truncation=True, max_length=1000, padding="max_length", return_tensors="np"
        )
        input_values = processed.input_values

        self._check_zero_mean_unit_variance(input_values[0, :800])
        self._check_zero_mean_unit_variance(input_values[1])
        self._check_zero_mean_unit_variance(input_values[2])

    def test_zero_mean_unit_variance_normalization_trunc_np_longest(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = feat_extract(
            speech_inputs, truncation=True, max_length=1000, padding="longest", return_tensors="np"
        )
        input_values = processed.input_values

        self._check_zero_mean_unit_variance(input_values[0, :800])
        self._check_zero_mean_unit_variance(input_values[1, :1000])
        self._check_zero_mean_unit_variance(input_values[2])

        # make sure that if max_length < longest -> then pad to max_length
        self.assertTrue(input_values.shape == (3, 1000))

        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = feat_extract(
            speech_inputs, truncation=True, max_length=2000, padding="longest", return_tensors="np"
        )
        input_values = processed.input_values

        self._check_zero_mean_unit_variance(input_values[0, :800])
        self._check_zero_mean_unit_variance(input_values[1, :1000])
        self._check_zero_mean_unit_variance(input_values[2])

        # make sure that if max_length > longest -> then pad to longest
        self.assertTrue(input_values.shape == (3, 1200))

    def test_double_precision_pad(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        np_speech_inputs = np.random.rand(100).astype(np.float64)
        py_speech_inputs = np_speech_inputs.tolist()

        for inputs in [py_speech_inputs, np_speech_inputs]:
            np_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="np")
            self.assertTrue(np_processed.input_values.dtype == np.float32)
            pt_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="pt")
            self.assertTrue(pt_processed.input_values.dtype == torch.float32)

    def test_call_target(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        # create three inputs of length 8000, 14000, and 2000
        speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        # Test feature size
        input_values = feature_extractor(audio_target=np_speech_inputs, padding=True, return_tensors="np").input_values
        self.assertTrue(input_values.ndim == 3)
        self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins)

        # Test not batched input
        encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_values
        encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_values
        self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))

        # Test batched
        encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_values
        encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_values
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

    def test_batch_feature_target(self):
        speech_inputs = self.feat_extract_tester.prepare_inputs_for_target()
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        input_name = feat_extract.model_input_names[0]

        processed_features = BatchFeature({input_name: speech_inputs})

        self.assertTrue(all(len(x) == len(y) for x, y in zip(speech_inputs, processed_features[input_name])))

        speech_inputs = self.feat_extract_tester.prepare_inputs_for_target(equal_length=True)
        processed_features = BatchFeature({input_name: speech_inputs}, tensor_type="np")

        batch_features_input = processed_features[input_name]

        if len(batch_features_input.shape) < 3:
            batch_features_input = batch_features_input[:, :, None]

        self.assertTrue(
            batch_features_input.shape
            == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)
        )

    @require_torch
    def test_batch_feature_target_pt(self):
        speech_inputs = self.feat_extract_tester.prepare_inputs_for_target(equal_length=True)
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        input_name = feat_extract.model_input_names[0]

        processed_features = BatchFeature({input_name: speech_inputs}, tensor_type="pt")

        batch_features_input = processed_features[input_name]

        if len(batch_features_input.shape) < 3:
            batch_features_input = batch_features_input[:, :, None]

        self.assertTrue(
            batch_features_input.shape
            == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)
        )

    @require_torch
    def test_padding_accepts_tensors_target_pt(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        speech_inputs = self.feat_extract_tester.prepare_inputs_for_target()
        input_name = feat_extract.model_input_names[0]

        processed_features = BatchFeature({input_name: speech_inputs})

        feat_extract.feature_size = feat_extract.num_mel_bins  # hack!

        input_np = feat_extract.pad(processed_features, padding="longest", return_tensors="np")[input_name]
        input_pt = feat_extract.pad(processed_features, padding="longest", return_tensors="pt")[input_name]

        self.assertTrue(abs(input_np.astype(np.float32).sum() - input_pt.numpy().astype(np.float32).sum()) < 1e-2)

    def test_attention_mask_target(self):
        feat_dict = self.feat_extract_dict
        feat_dict["return_attention_mask"] = True
        feat_extract = self.feature_extraction_class(**feat_dict)
        speech_inputs = self.feat_extract_tester.prepare_inputs_for_target()
        input_lenghts = [len(x) for x in speech_inputs]
        input_name = feat_extract.model_input_names[0]

        processed = BatchFeature({input_name: speech_inputs})

        feat_extract.feature_size = feat_extract.num_mel_bins  # hack!

        processed = feat_extract.pad(processed, padding="longest", return_tensors="np")
        self.assertIn("attention_mask", processed)
        self.assertListEqual(list(processed.attention_mask.shape), list(processed[input_name].shape[:2]))
        self.assertListEqual(processed.attention_mask.sum(-1).tolist(), input_lenghts)

    def test_attention_mask_with_truncation_target(self):
        feat_dict = self.feat_extract_dict
        feat_dict["return_attention_mask"] = True
        feat_extract = self.feature_extraction_class(**feat_dict)
        speech_inputs = self.feat_extract_tester.prepare_inputs_for_target()
        input_lenghts = [len(x) for x in speech_inputs]
        input_name = feat_extract.model_input_names[0]

        processed = BatchFeature({input_name: speech_inputs})
        max_length = min(input_lenghts)

        feat_extract.feature_size = feat_extract.num_mel_bins  # hack!

        processed_pad = feat_extract.pad(
            processed, padding="max_length", max_length=max_length, truncation=True, return_tensors="np"
        )
        self.assertIn("attention_mask", processed_pad)
        self.assertListEqual(
            list(processed_pad.attention_mask.shape), [processed_pad[input_name].shape[0], max_length]
        )
        self.assertListEqual(
            processed_pad.attention_mask[:, :max_length].sum(-1).tolist(), [max_length for x in speech_inputs]
        )

    def _load_datasamples(self, num_samples):
        from datasets import load_dataset

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return [x["array"] for x in speech_samples]

    def test_integration(self):
        # fmt: off
        EXPECTED_INPUT_VALUES = torch.tensor(
            [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03,
             3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03,
             2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04,
             4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03,
             7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04,
             4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03]
        )
        # fmt: on

        input_speech = self._load_datasamples(1)
        feature_extractor = SpeechT5FeatureExtractor()
        input_values = feature_extractor(input_speech, return_tensors="pt").input_values
        self.assertTrue(torch.allclose(input_values[0, :30], EXPECTED_INPUT_VALUES, atol=1e-4))

    def test_integration_target(self):
        # fmt: off
        EXPECTED_INPUT_VALUES = torch.tensor(
            [-2.7713, -2.8896, -3.2619, -3.0843, -2.9919, -3.0084, -3.2796, -3.3169,
             -3.2397, -3.2053, -2.9151, -2.7921, -2.9403, -2.7411, -3.0654, -2.8314,
             -3.0026, -2.9797, -3.1314, -2.9939, -2.6748, -2.7725, -2.8563, -2.9462,
             -3.2623, -3.3044, -3.1318, -3.2672, -3.4030, -3.1988]
        )
        # fmt: on

        input_speech = self._load_datasamples(1)
        feature_extractor = SpeechT5FeatureExtractor()
        input_values = feature_extractor(audio_target=input_speech, return_tensors="pt").input_values
        self.assertTrue(torch.allclose(input_values[0, 0, :30], EXPECTED_INPUT_VALUES, atol=1e-4))