File size: 6,945 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch

import numpy as np
from datasets import Dataset

from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer


class RealmRetrieverTest(TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        self.num_block_records = 5

        # Realm tok
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "test",
            "question",
            "this",
            "is",
            "the",
            "first",
            "second",
            "third",
            "fourth",
            "fifth",
            "record",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        realm_tokenizer_path = os.path.join(self.tmpdirname, "realm_tokenizer")
        os.makedirs(realm_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(realm_tokenizer_path, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

        realm_block_records_path = os.path.join(self.tmpdirname, "realm_block_records")
        os.makedirs(realm_block_records_path, exist_ok=True)

    def get_tokenizer(self) -> RealmTokenizer:
        return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname, "realm_tokenizer"))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def get_config(self):
        config = RealmConfig(num_block_records=self.num_block_records)
        return config

    def get_dummy_dataset(self):
        dataset = Dataset.from_dict(
            {
                "id": ["0", "1"],
                "question": ["foo", "bar"],
                "answers": [["Foo", "Bar"], ["Bar"]],
            }
        )
        return dataset

    def get_dummy_block_records(self):
        block_records = np.array(
            [
                b"This is the first record",
                b"This is the second record",
                b"This is the third record",
                b"This is the fourth record",
                b"This is the fifth record",
                b"This is a longer longer longer record",
            ],
            dtype=np.object,
        )
        return block_records

    def get_dummy_retriever(self):
        retriever = RealmRetriever(
            block_records=self.get_dummy_block_records(),
            tokenizer=self.get_tokenizer(),
        )
        return retriever

    def test_retrieve(self):
        config = self.get_config()
        retriever = self.get_dummy_retriever()
        tokenizer = retriever.tokenizer

        retrieved_block_ids = np.array([0, 3], dtype=np.long)
        question_input_ids = tokenizer(["Test question"]).input_ids
        answer_ids = tokenizer(
            ["the fourth"],
            add_special_tokens=False,
            return_token_type_ids=False,
            return_attention_mask=False,
        ).input_ids
        max_length = config.reader_seq_len

        has_answers, start_pos, end_pos, concat_inputs = retriever(
            retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np"
        )

        self.assertEqual(len(has_answers), 2)
        self.assertEqual(len(start_pos), 2)
        self.assertEqual(len(end_pos), 2)
        self.assertEqual(concat_inputs.input_ids.shape, (2, 10))
        self.assertEqual(concat_inputs.attention_mask.shape, (2, 10))
        self.assertEqual(concat_inputs.token_type_ids.shape, (2, 10))
        self.assertEqual(concat_inputs.special_tokens_mask.shape, (2, 10))
        self.assertEqual(
            tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]),
            ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"],
        )
        self.assertEqual(
            tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]),
            ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"],
        )

    def test_block_has_answer(self):
        config = self.get_config()
        retriever = self.get_dummy_retriever()
        tokenizer = retriever.tokenizer

        retrieved_block_ids = np.array([0, 3, 5], dtype=np.long)
        question_input_ids = tokenizer(["Test question"]).input_ids
        answer_ids = tokenizer(
            ["the fourth", "longer longer"],
            add_special_tokens=False,
            return_token_type_ids=False,
            return_attention_mask=False,
        ).input_ids
        max_length = config.reader_seq_len

        has_answers, start_pos, end_pos, _ = retriever(
            retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np"
        )

        self.assertEqual([False, True, True], has_answers)
        self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]], start_pos)
        self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]], end_pos)

    def test_save_load_pretrained(self):
        retriever = self.get_dummy_retriever()
        retriever.save_pretrained(os.path.join(self.tmpdirname, "realm_block_records"))

        # Test local path
        retriever = retriever.from_pretrained(os.path.join(self.tmpdirname, "realm_block_records"))
        self.assertEqual(retriever.block_records[0], b"This is the first record")

        # Test mocked remote path
        with patch("transformers.models.realm.retrieval_realm.hf_hub_download") as mock_hf_hub_download:
            mock_hf_hub_download.return_value = os.path.join(
                os.path.join(self.tmpdirname, "realm_block_records"), _REALM_BLOCK_RECORDS_FILENAME
            )
            retriever = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa")

        self.assertEqual(retriever.block_records[0], b"This is the first record")