Spaces:
Runtime error
Runtime error
File size: 6,945 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class RealmRetrieverTest(TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
self.num_block_records = 5
# Realm tok
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"test",
"question",
"this",
"is",
"the",
"first",
"second",
"third",
"fourth",
"fifth",
"record",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
realm_tokenizer_path = os.path.join(self.tmpdirname, "realm_tokenizer")
os.makedirs(realm_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(realm_tokenizer_path, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
realm_block_records_path = os.path.join(self.tmpdirname, "realm_block_records")
os.makedirs(realm_block_records_path, exist_ok=True)
def get_tokenizer(self) -> RealmTokenizer:
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname, "realm_tokenizer"))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def get_config(self):
config = RealmConfig(num_block_records=self.num_block_records)
return config
def get_dummy_dataset(self):
dataset = Dataset.from_dict(
{
"id": ["0", "1"],
"question": ["foo", "bar"],
"answers": [["Foo", "Bar"], ["Bar"]],
}
)
return dataset
def get_dummy_block_records(self):
block_records = np.array(
[
b"This is the first record",
b"This is the second record",
b"This is the third record",
b"This is the fourth record",
b"This is the fifth record",
b"This is a longer longer longer record",
],
dtype=np.object,
)
return block_records
def get_dummy_retriever(self):
retriever = RealmRetriever(
block_records=self.get_dummy_block_records(),
tokenizer=self.get_tokenizer(),
)
return retriever
def test_retrieve(self):
config = self.get_config()
retriever = self.get_dummy_retriever()
tokenizer = retriever.tokenizer
retrieved_block_ids = np.array([0, 3], dtype=np.long)
question_input_ids = tokenizer(["Test question"]).input_ids
answer_ids = tokenizer(
["the fourth"],
add_special_tokens=False,
return_token_type_ids=False,
return_attention_mask=False,
).input_ids
max_length = config.reader_seq_len
has_answers, start_pos, end_pos, concat_inputs = retriever(
retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np"
)
self.assertEqual(len(has_answers), 2)
self.assertEqual(len(start_pos), 2)
self.assertEqual(len(end_pos), 2)
self.assertEqual(concat_inputs.input_ids.shape, (2, 10))
self.assertEqual(concat_inputs.attention_mask.shape, (2, 10))
self.assertEqual(concat_inputs.token_type_ids.shape, (2, 10))
self.assertEqual(concat_inputs.special_tokens_mask.shape, (2, 10))
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]),
["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"],
)
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]),
["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"],
)
def test_block_has_answer(self):
config = self.get_config()
retriever = self.get_dummy_retriever()
tokenizer = retriever.tokenizer
retrieved_block_ids = np.array([0, 3, 5], dtype=np.long)
question_input_ids = tokenizer(["Test question"]).input_ids
answer_ids = tokenizer(
["the fourth", "longer longer"],
add_special_tokens=False,
return_token_type_ids=False,
return_attention_mask=False,
).input_ids
max_length = config.reader_seq_len
has_answers, start_pos, end_pos, _ = retriever(
retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np"
)
self.assertEqual([False, True, True], has_answers)
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]], start_pos)
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]], end_pos)
def test_save_load_pretrained(self):
retriever = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname, "realm_block_records"))
# Test local path
retriever = retriever.from_pretrained(os.path.join(self.tmpdirname, "realm_block_records"))
self.assertEqual(retriever.block_records[0], b"This is the first record")
# Test mocked remote path
with patch("transformers.models.realm.retrieval_realm.hf_hub_download") as mock_hf_hub_download:
mock_hf_hub_download.return_value = os.path.join(
os.path.join(self.tmpdirname, "realm_block_records"), _REALM_BLOCK_RECORDS_FILENAME
)
retriever = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa")
self.assertEqual(retriever.block_records[0], b"This is the first record")
|