File size: 7,358 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest

import numpy as np
import pytest

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available


if is_vision_available():
    from PIL import Image

    from transformers import (
        AutoProcessor,
        Pix2StructImageProcessor,
        Pix2StructProcessor,
        PreTrainedTokenizerFast,
        T5Tokenizer,
    )


@require_vision
@require_torch
class Pix2StructProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        image_processor = Pix2StructImageProcessor()
        tokenizer = T5Tokenizer.from_pretrained("t5-small")

        processor = Pix2StructProcessor(image_processor, tokenizer)

        processor.save_pretrained(self.tmpdirname)

    def get_tokenizer(self, **kwargs):
        return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer

    def get_image_processor(self, **kwargs):
        return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """
        This function prepares a list of random PIL images of the same fixed size.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_additional_features(self):
        processor = Pix2StructProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)

        processor = Pix2StructProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)

        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, Pix2StructImageProcessor)

    def test_image_processor(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        image_input = self.prepare_image_inputs()

        input_feat_extract = image_processor(image_input, return_tensors="np")
        input_processor = processor(images=image_input, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        input_str = "lower newer"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str, return_token_type_ids=False, add_special_tokens=False)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_processor(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(
            list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"]
        )

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()

    def test_processor_max_patches(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        max_patches = [512, 1024, 2048, 4096]
        expected_hidden_size = [770, 770, 770, 770]
        # with text
        for i, max_patch in enumerate(max_patches):
            inputs = processor(text=input_str, images=image_input, max_patches=max_patch)
            self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch)
            self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i])

        # without text input
        for i, max_patch in enumerate(max_patches):
            inputs = processor(images=image_input, max_patches=max_patch)
            self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch)
            self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i])

    def test_tokenizer_decode(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)

    def test_model_input_names(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"]
        self.assertListEqual(
            list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"]
        )

        inputs = processor(text=input_str)

        # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"]
        self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])