File size: 44,844 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Perceiver model. """

import copy
import inspect
import math
import tempfile
import unittest
import warnings
from typing import Dict, List, Tuple

import numpy as np
from datasets import load_dataset

from transformers import PerceiverConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    from torch import nn

    from transformers import (
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        MODEL_MAPPING,
        PerceiverForImageClassificationConvProcessing,
        PerceiverForImageClassificationFourier,
        PerceiverForImageClassificationLearned,
        PerceiverForMaskedLM,
        PerceiverForMultimodalAutoencoding,
        PerceiverForOpticalFlow,
        PerceiverForSequenceClassification,
        PerceiverModel,
        PerceiverTokenizer,
    )
    from transformers.models.perceiver.modeling_perceiver import PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

    from transformers import PerceiverFeatureExtractor


class PerceiverModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        num_channels=3,
        image_size=32,
        train_size=[20, 20],
        num_frames=5,
        audio_samples_per_frame=200,
        samples_per_patch=20,
        nchunks=20,
        num_latents=10,
        d_latents=20,
        num_blocks=1,
        num_self_attends_per_block=2,
        num_self_attention_heads=1,
        num_cross_attention_heads=1,
        self_attention_widening_factor=4,
        cross_attention_widening_factor=4,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_act="gelu",
        attention_probs_dropout_prob=0.1,
        initializer_range=0.02,
        max_position_embeddings=7,
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.num_channels = num_channels
        self.image_size = image_size
        self.train_size = train_size
        self.num_frames = num_frames
        self.audio_samples_per_frame = audio_samples_per_frame
        self.samples_per_patch = samples_per_patch
        self.nchunks = nchunks
        self.num_latents = num_latents
        self.d_latents = d_latents
        self.num_blocks = num_blocks
        self.num_self_attends_per_block = num_self_attends_per_block
        self.num_self_attention_heads = num_self_attention_heads
        self.num_cross_attention_heads = num_cross_attention_heads
        self.self_attention_widening_factor = self_attention_widening_factor
        self.cross_attention_widening_factor = cross_attention_widening_factor
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_act = hidden_act
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope
        # set subsampling for multimodal model (take first chunk)
        image_chunk_size = np.prod((self.num_frames, self.image_size, self.image_size)) // self.nchunks
        audio_chunk_size = self.num_frames * self.audio_samples_per_frame // self.samples_per_patch // self.nchunks
        self.subsampling = {
            "image": torch.arange(0, image_chunk_size),
            "audio": torch.arange(0, audio_chunk_size),
            "label": None,
        }

    def prepare_config_and_inputs(self, model_class=None):
        config = self.get_config()

        input_mask = None
        sequence_labels = None
        token_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.num_labels)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)

        if model_class is None or model_class.__name__ == "PerceiverModel":
            inputs = floats_tensor([self.batch_size, self.seq_length, config.d_model], scale=1.0)
            return config, inputs, input_mask, sequence_labels, token_labels
        elif model_class.__name__ in ["PerceiverForMaskedLM", "PerceiverForSequenceClassification"]:
            inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            # input mask is only relevant for text inputs
            if self.use_input_mask:
                input_mask = random_attention_mask([self.batch_size, self.seq_length])
        elif model_class.__name__ == "PerceiverForImageClassificationLearned":
            inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
        elif model_class.__name__ == "PerceiverForImageClassificationFourier":
            inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
        elif model_class.__name__ == "PerceiverForImageClassificationConvProcessing":
            inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
        elif model_class.__name__ == "PerceiverForOpticalFlow":
            inputs = floats_tensor([self.batch_size, 2, 27, self.train_size[0], self.train_size[1]])
        elif model_class.__name__ == "PerceiverForMultimodalAutoencoding":
            images = torch.randn(
                (self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size),
                device=torch_device,
            )
            audio = torch.randn(
                (self.batch_size, self.num_frames * self.audio_samples_per_frame, 1), device=torch_device
            )
            inputs = {
                "image": images,
                "audio": audio,
                "label": torch.zeros((self.batch_size, self.num_labels), device=torch_device),
            }
        else:
            raise ValueError(f"Model class {model_class} not supported")

        return config, inputs, input_mask, sequence_labels, token_labels

    def get_config(self):
        return PerceiverConfig(
            num_latents=self.num_latents,
            d_latents=self.d_latents,
            qk_channels=self.d_latents,
            v_channels=self.d_latents,
            num_blocks=self.num_blocks,
            num_self_attends_per_block=self.num_self_attends_per_block,
            num_self_attention_heads=self.num_self_attention_heads,
            num_cross_attention_heads=self.num_cross_attention_heads,
            self_attention_widening_factor=self.self_attention_widening_factor,
            cross_attention_widening_factor=self.cross_attention_widening_factor,
            vocab_size=self.vocab_size,
            hidden_act=self.hidden_act,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            initializer_range=self.initializer_range,
            max_position_embeddings=self.max_position_embeddings,
            image_size=self.image_size,
            train_size=self.train_size,
            num_frames=self.num_frames,
            audio_samples_per_frame=self.audio_samples_per_frame,
            samples_per_patch=self.samples_per_patch,
            num_labels=self.num_labels,
        )

    def get_pipeline_config(self):
        config = self.get_config()
        # Byte level vocab
        config.vocab_size = 261
        config.max_position_embeddings = 40
        return config

    def create_and_check_for_masked_lm(self, config, inputs, input_mask, sequence_labels, token_labels):
        model = PerceiverForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(inputs, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_for_sequence_classification(self, config, inputs, input_mask, sequence_labels, token_labels):
        model = PerceiverForSequenceClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_for_image_classification_learned(
        self, config, inputs, input_mask, sequence_labels, token_labels
    ):
        model = PerceiverForImageClassificationLearned(config=config)
        model.to(torch_device)
        model.eval()
        result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_for_image_classification_fourier(
        self, config, inputs, input_mask, sequence_labels, token_labels
    ):
        model = PerceiverForImageClassificationFourier(config=config)
        model.to(torch_device)
        model.eval()
        result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_for_image_classification_conv(
        self, config, inputs, input_mask, sequence_labels, token_labels
    ):
        model = PerceiverForImageClassificationConvProcessing(config=config)
        model.to(torch_device)
        model.eval()
        result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs
        inputs_dict = {"inputs": inputs, "attention_mask": input_mask}
        return config, inputs_dict

    def prepare_config_and_inputs_for_model_class(self, model_class):
        config_and_inputs = self.prepare_config_and_inputs(model_class)
        config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs
        inputs_dict = {"inputs": inputs, "attention_mask": input_mask}

        return config, inputs_dict


@require_torch
class PerceiverModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            PerceiverModel,
            PerceiverForMaskedLM,
            PerceiverForImageClassificationLearned,
            PerceiverForImageClassificationConvProcessing,
            PerceiverForImageClassificationFourier,
            PerceiverForOpticalFlow,
            PerceiverForMultimodalAutoencoding,
            PerceiverForSequenceClassification,
        )
        if is_torch_available()
        else ()
    )
    pipeline_model_mapping = (
        {
            "feature-extraction": PerceiverModel,
            "fill-mask": PerceiverForMaskedLM,
            "image-classification": (
                PerceiverForImageClassificationConvProcessing,
                PerceiverForImageClassificationFourier,
                PerceiverForImageClassificationLearned,
            ),
            "text-classification": PerceiverForSequenceClassification,
            "zero-shot": PerceiverForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    test_pruning = False
    test_head_masking = False
    test_torchscript = False

    maxDiff = None

    def setUp(self):
        self.model_tester = PerceiverModelTester(self)
        self.config_tester = ConfigTester(self, config_class=PerceiverConfig, hidden_size=37)

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)

        if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
            inputs_dict["subsampled_output_points"] = self.model_tester.subsampling

        if return_labels:
            if model_class in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
        return inputs_dict

    def test_config(self):
        # we don't test common_properties and arguments_init as these don't apply for Perceiver
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForMaskedLM)
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForSequenceClassification)
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)

    def test_for_image_classification_learned(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            model_class=PerceiverForImageClassificationLearned
        )
        self.model_tester.create_and_check_for_image_classification_learned(*config_and_inputs)

    def test_for_image_classification_fourier(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            model_class=PerceiverForImageClassificationFourier
        )
        self.model_tester.create_and_check_for_image_classification_fourier(*config_and_inputs)

    def test_for_image_classification_conv(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            model_class=PerceiverForImageClassificationConvProcessing
        )
        self.model_tester.create_and_check_for_image_classification_conv(*config_and_inputs)

    def test_model_common_attributes(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            model = model_class(config)
            # we overwrite this, as the embeddings of Perceiver are an instance of nn.Parameter
            # and Perceiver doesn't support get_output_embeddings
            self.assertIsInstance(model.get_input_embeddings(), (nn.Parameter))

    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
            if model_class in [
                *get_values(MODEL_MAPPING),
                PerceiverForOpticalFlow,
                PerceiverForMultimodalAutoencoding,
            ]:
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            config.return_dict = True

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_forward_signature(self):
        for model_class in self.all_model_classes:
            config, _ = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["inputs"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_determinism(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                first = model(**inputs_dict)[0]
                second = model(**inputs_dict)[0]

            if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
                # model outputs a dictionary with logits per modality, let's verify each modality
                for modality in first.keys():
                    out_1 = first[modality].cpu().numpy()
                    out_2 = second[modality].cpu().numpy()
                    out_1 = out_1[~np.isnan(out_1)]
                    out_2 = out_2[~np.isnan(out_2)]
                    max_diff = np.amax(np.abs(out_1 - out_2))
                    self.assertLessEqual(max_diff, 1e-5)
            else:
                out_1 = first.cpu().numpy()
                out_2 = second.cpu().numpy()
                out_1 = out_1[~np.isnan(out_1)]
                out_2 = out_2[~np.isnan(out_2)]
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    def test_attention_outputs(self):
        seq_len = getattr(self.model_tester, "num_latents", None)

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            config.return_dict = True

            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            self_attentions = outputs.attentions
            cross_attentions = outputs.cross_attentions

            # check expected number of attentions depending on model class
            expected_num_self_attentions = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block
            if model.__class__.__name__ == "PerceiverModel":
                # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder
                expected_num_cross_attentions = 1
            else:
                # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder
                expected_num_cross_attentions = 2
            self.assertEqual(len(self_attentions), expected_num_self_attentions)
            self.assertEqual(len(cross_attentions), expected_num_cross_attentions)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            self_attentions = outputs.attentions
            cross_attentions = outputs.cross_attentions
            self.assertEqual(len(self_attentions), expected_num_self_attentions)
            self.assertEqual(len(cross_attentions), expected_num_cross_attentions)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_self_attention_heads, seq_len, seq_len],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + 1, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), expected_num_self_attentions)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_self_attention_heads, seq_len, seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block + 1
            self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = self.model_tester.num_latents

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.d_latents],
            )

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_model_outputs_equivalence(self):
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
                # optical flow + multimodal models don't support training for now
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)

            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
                # optical flow + multimodal models don't support training for now
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
                # optical flow + multimodal models don't support training for now
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
                # optical flow + multimodal models don't support training for now
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )

    def test_retain_grad_hidden_states_attentions(self):
        # no need to test all models as different heads yield the same functionality
        model_class = PerceiverForMaskedLM
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
        config.output_hidden_states = True
        config.output_attentions = True

        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)

        output = outputs[0]

        # Encoder-only model
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

    def test_feed_forward_chunking(self):
        for model_class in self.all_model_classes:
            original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
                # model outputs a dictionary with logits for each modality
                for modality in hidden_states_no_chunk.keys():
                    self.assertTrue(
                        torch.allclose(hidden_states_no_chunk[modality], hidden_states_with_chunk[modality], atol=1e-3)
                    )
            else:
                self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

    def test_save_load(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)

            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
                for modality in outputs[0].keys():
                    out_2 = outputs[0][modality].cpu().numpy()
                    out_2[np.isnan(out_2)] = 0

                    with tempfile.TemporaryDirectory() as tmpdirname:
                        model.save_pretrained(tmpdirname)
                        model = model_class.from_pretrained(tmpdirname)
                        model.to(torch_device)
                        with torch.no_grad():
                            after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))

                        # Make sure we don't have nans
                        out_1 = after_outputs[0][modality].cpu().numpy()
                        out_1[np.isnan(out_1)] = 0
                        max_diff = np.amax(np.abs(out_1 - out_2))
                        self.assertLessEqual(max_diff, 1e-5)

            else:
                out_2 = outputs[0].cpu().numpy()
                out_2[np.isnan(out_2)] = 0

                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model = model_class.from_pretrained(tmpdirname)
                    model.to(torch_device)
                    with torch.no_grad():
                        after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))

                    # Make sure we don't have nans
                    out_1 = after_outputs[0].cpu().numpy()
                    out_1[np.isnan(out_1)] = 0
                    max_diff = np.amax(np.abs(out_1 - out_2))
                    self.assertLessEqual(max_diff, 1e-5)

    def test_correct_missing_keys(self):
        if not self.test_missing_keys:
            return
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # most Perceiver models don't have a typical head like is the case with BERT
            if model_class in [
                PerceiverForOpticalFlow,
                PerceiverForMultimodalAutoencoding,
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
                continue

            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

    def test_problem_types(self):
        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            config, inputs, input_mask, _, _ = self.model_tester.prepare_config_and_inputs(model_class=model_class)
            inputs_dict = {"inputs": inputs, "attention_mask": input_mask}

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )

                    loss.backward()

    @require_torch_multi_gpu
    @unittest.skip(
        reason=(
            "Perceiver does not work with data parallel (DP) because of a bug in PyTorch:"
            " https://github.com/pytorch/pytorch/issues/36035"
        )
    )
    def test_multi_gpu_data_parallel_forward(self):
        pass

    @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT")
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings")
    def test_resize_embeddings_untied(self):
        pass

    @unittest.skip(reason="Perceiver doesn't support inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Perceiver doesn't support the AutoModel API")
    def test_load_with_mismatched_shapes(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = PerceiverModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


# Helper functions for optical flow integration test
def prepare_optical_flow_images():
    dataset = load_dataset("hf-internal-testing/fixtures_sintel", split="test")
    image1 = Image.open(dataset[0]["file"]).convert("RGB")
    image2 = Image.open(dataset[0]["file"]).convert("RGB")

    return image1, image2


def normalize(img):
    return img / 255.0 * 2 - 1


def extract_image_patches(x, kernel, stride=1, dilation=1):
    # Do TF 'SAME' Padding
    b, c, h, w = x.shape
    h2 = math.ceil(h / stride)
    w2 = math.ceil(w / stride)
    pad_row = (h2 - 1) * stride + (kernel - 1) * dilation + 1 - h
    pad_col = (w2 - 1) * stride + (kernel - 1) * dilation + 1 - w
    x = torch.nn.functional.pad(x, (pad_row // 2, pad_row - pad_row // 2, pad_col // 2, pad_col - pad_col // 2))

    # Extract patches
    patches = x.unfold(2, kernel, stride).unfold(3, kernel, stride)
    patches = patches.permute(0, 4, 5, 1, 2, 3).contiguous()

    return patches.view(b, -1, patches.shape[-2], patches.shape[-1])


@require_torch
@require_vision
class PerceiverModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        tokenizer = PerceiverTokenizer.from_pretrained("deepmind/language-perceiver")
        model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver")
        model.to(torch_device)

        # prepare inputs
        text = "This is an incomplete sentence where some words are missing."
        encoding = tokenizer(text, padding="max_length", return_tensors="pt")

        # mask " missing.".
        encoding.input_ids[0, 52:61] = tokenizer.mask_token_id
        inputs, input_mask = encoding.input_ids.to(torch_device), encoding.attention_mask.to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(inputs=inputs, attention_mask=input_mask)
        logits = outputs.logits

        # verify logits
        expected_shape = torch.Size((1, tokenizer.model_max_length, tokenizer.vocab_size))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[-10.8609, -10.7651, -10.9187], [-12.1689, -11.9389, -12.1479], [-12.1518, -11.9707, -12.2073]],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4))

        expected_greedy_predictions = [38, 115, 111, 121, 121, 111, 116, 109, 52]
        masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist()
        self.assertListEqual(expected_greedy_predictions, masked_tokens_predictions)

    @slow
    def test_inference_image_classification(self):
        feature_extractor = PerceiverFeatureExtractor()
        model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned")
        model.to(torch_device)

        # prepare inputs
        image = prepare_img()
        inputs = feature_extractor(image, return_tensors="pt").pixel_values.to(torch_device)
        input_mask = None

        # forward pass
        with torch.no_grad():
            outputs = model(inputs=inputs, attention_mask=input_mask)
        logits = outputs.logits

        # verify logits
        expected_shape = torch.Size((1, model.config.num_labels))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.1652, -0.1992, -0.7520], device=torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

    @slow
    def test_inference_image_classification_fourier(self):
        feature_extractor = PerceiverFeatureExtractor()
        model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier")
        model.to(torch_device)

        # prepare inputs
        image = prepare_img()
        inputs = feature_extractor(image, return_tensors="pt").pixel_values.to(torch_device)
        input_mask = None

        # forward pass
        with torch.no_grad():
            outputs = model(inputs=inputs, attention_mask=input_mask)
        logits = outputs.logits

        # verify logits
        expected_shape = torch.Size((1, model.config.num_labels))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.1295, -0.2832, 0.3226], device=torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

    @slow
    def test_inference_image_classification_conv(self):
        feature_extractor = PerceiverFeatureExtractor()
        model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
        model.to(torch_device)

        # prepare inputs
        image = prepare_img()
        inputs = feature_extractor(image, return_tensors="pt").pixel_values.to(torch_device)
        input_mask = None

        # forward pass
        with torch.no_grad():
            outputs = model(inputs=inputs, attention_mask=input_mask)
        logits = outputs.logits

        # verify logits
        expected_shape = torch.Size((1, model.config.num_labels))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.1186, 0.0554, 0.0897], device=torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

    @slow
    def test_inference_optical_flow(self):
        model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver")
        model.to(torch_device)

        # prepare inputs
        image1, image2 = prepare_optical_flow_images()
        img1 = normalize(np.array(image1))
        img2 = normalize(np.array(image1))

        # stack images
        img1 = torch.tensor(np.moveaxis(img1, -1, 0))
        img2 = torch.tensor(np.moveaxis(img2, -1, 0))
        images = torch.stack([img1, img2], dim=0)

        # extract 3x3 patches
        patch_size = model.config.train_size

        inputs = images[..., : patch_size[0], : patch_size[1]].unsqueeze(0)
        batch_size, _, C, H, W = inputs.shape
        patches = extract_image_patches(inputs.view(batch_size * 2, C, H, W), kernel=3)
        _, C, H, W = patches.shape
        patches = patches.view(batch_size, -1, C, H, W).float()

        # forward pass
        with torch.no_grad():
            outputs = model(inputs=patches.to(torch_device))
        logits = outputs.logits

        # verify logits
        expected_shape = torch.Size((1, 368, 496, 2))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [
                [[0.0025, -0.0050], [0.0025, -0.0049], [0.0025, -0.0048]],
                [[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0047]],
                [[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0046]],
            ],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))