Spaces:
Runtime error
Runtime error
File size: 44,844 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Perceiver model. """
import copy
import inspect
import math
import tempfile
import unittest
import warnings
from typing import Dict, List, Tuple
import numpy as np
from datasets import load_dataset
from transformers import PerceiverConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverModel,
PerceiverTokenizer,
)
from transformers.models.perceiver.modeling_perceiver import PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import PerceiverFeatureExtractor
class PerceiverModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
num_channels=3,
image_size=32,
train_size=[20, 20],
num_frames=5,
audio_samples_per_frame=200,
samples_per_patch=20,
nchunks=20,
num_latents=10,
d_latents=20,
num_blocks=1,
num_self_attends_per_block=2,
num_self_attention_heads=1,
num_cross_attention_heads=1,
self_attention_widening_factor=4,
cross_attention_widening_factor=4,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_act="gelu",
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
max_position_embeddings=7,
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.num_channels = num_channels
self.image_size = image_size
self.train_size = train_size
self.num_frames = num_frames
self.audio_samples_per_frame = audio_samples_per_frame
self.samples_per_patch = samples_per_patch
self.nchunks = nchunks
self.num_latents = num_latents
self.d_latents = d_latents
self.num_blocks = num_blocks
self.num_self_attends_per_block = num_self_attends_per_block
self.num_self_attention_heads = num_self_attention_heads
self.num_cross_attention_heads = num_cross_attention_heads
self.self_attention_widening_factor = self_attention_widening_factor
self.cross_attention_widening_factor = cross_attention_widening_factor
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_act = hidden_act
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
# set subsampling for multimodal model (take first chunk)
image_chunk_size = np.prod((self.num_frames, self.image_size, self.image_size)) // self.nchunks
audio_chunk_size = self.num_frames * self.audio_samples_per_frame // self.samples_per_patch // self.nchunks
self.subsampling = {
"image": torch.arange(0, image_chunk_size),
"audio": torch.arange(0, audio_chunk_size),
"label": None,
}
def prepare_config_and_inputs(self, model_class=None):
config = self.get_config()
input_mask = None
sequence_labels = None
token_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.num_labels)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
if model_class is None or model_class.__name__ == "PerceiverModel":
inputs = floats_tensor([self.batch_size, self.seq_length, config.d_model], scale=1.0)
return config, inputs, input_mask, sequence_labels, token_labels
elif model_class.__name__ in ["PerceiverForMaskedLM", "PerceiverForSequenceClassification"]:
inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
# input mask is only relevant for text inputs
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
elif model_class.__name__ == "PerceiverForImageClassificationLearned":
inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
elif model_class.__name__ == "PerceiverForImageClassificationFourier":
inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
elif model_class.__name__ == "PerceiverForImageClassificationConvProcessing":
inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
elif model_class.__name__ == "PerceiverForOpticalFlow":
inputs = floats_tensor([self.batch_size, 2, 27, self.train_size[0], self.train_size[1]])
elif model_class.__name__ == "PerceiverForMultimodalAutoencoding":
images = torch.randn(
(self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size),
device=torch_device,
)
audio = torch.randn(
(self.batch_size, self.num_frames * self.audio_samples_per_frame, 1), device=torch_device
)
inputs = {
"image": images,
"audio": audio,
"label": torch.zeros((self.batch_size, self.num_labels), device=torch_device),
}
else:
raise ValueError(f"Model class {model_class} not supported")
return config, inputs, input_mask, sequence_labels, token_labels
def get_config(self):
return PerceiverConfig(
num_latents=self.num_latents,
d_latents=self.d_latents,
qk_channels=self.d_latents,
v_channels=self.d_latents,
num_blocks=self.num_blocks,
num_self_attends_per_block=self.num_self_attends_per_block,
num_self_attention_heads=self.num_self_attention_heads,
num_cross_attention_heads=self.num_cross_attention_heads,
self_attention_widening_factor=self.self_attention_widening_factor,
cross_attention_widening_factor=self.cross_attention_widening_factor,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
max_position_embeddings=self.max_position_embeddings,
image_size=self.image_size,
train_size=self.train_size,
num_frames=self.num_frames,
audio_samples_per_frame=self.audio_samples_per_frame,
samples_per_patch=self.samples_per_patch,
num_labels=self.num_labels,
)
def get_pipeline_config(self):
config = self.get_config()
# Byte level vocab
config.vocab_size = 261
config.max_position_embeddings = 40
return config
def create_and_check_for_masked_lm(self, config, inputs, input_mask, sequence_labels, token_labels):
model = PerceiverForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(self, config, inputs, input_mask, sequence_labels, token_labels):
model = PerceiverForSequenceClassification(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_image_classification_learned(
self, config, inputs, input_mask, sequence_labels, token_labels
):
model = PerceiverForImageClassificationLearned(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_image_classification_fourier(
self, config, inputs, input_mask, sequence_labels, token_labels
):
model = PerceiverForImageClassificationFourier(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_image_classification_conv(
self, config, inputs, input_mask, sequence_labels, token_labels
):
model = PerceiverForImageClassificationConvProcessing(config=config)
model.to(torch_device)
model.eval()
result = model(inputs, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs
inputs_dict = {"inputs": inputs, "attention_mask": input_mask}
return config, inputs_dict
def prepare_config_and_inputs_for_model_class(self, model_class):
config_and_inputs = self.prepare_config_and_inputs(model_class)
config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs
inputs_dict = {"inputs": inputs, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class PerceiverModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
PerceiverModel,
PerceiverForMaskedLM,
PerceiverForImageClassificationLearned,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForOpticalFlow,
PerceiverForMultimodalAutoencoding,
PerceiverForSequenceClassification,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": PerceiverModel,
"fill-mask": PerceiverForMaskedLM,
"image-classification": (
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
),
"text-classification": PerceiverForSequenceClassification,
"zero-shot": PerceiverForSequenceClassification,
}
if is_torch_available()
else {}
)
test_pruning = False
test_head_masking = False
test_torchscript = False
maxDiff = None
def setUp(self):
self.model_tester = PerceiverModelTester(self)
self.config_tester = ConfigTester(self, config_class=PerceiverConfig, hidden_size=37)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
inputs_dict["subsampled_output_points"] = self.model_tester.subsampling
if return_labels:
if model_class in [
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
]:
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
elif model_class in [
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_MASKED_LM_MAPPING),
]:
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
return inputs_dict
def test_config(self):
# we don't test common_properties and arguments_init as these don't apply for Perceiver
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForMaskedLM)
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForSequenceClassification)
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_image_classification_learned(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
model_class=PerceiverForImageClassificationLearned
)
self.model_tester.create_and_check_for_image_classification_learned(*config_and_inputs)
def test_for_image_classification_fourier(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
model_class=PerceiverForImageClassificationFourier
)
self.model_tester.create_and_check_for_image_classification_fourier(*config_and_inputs)
def test_for_image_classification_conv(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
model_class=PerceiverForImageClassificationConvProcessing
)
self.model_tester.create_and_check_for_image_classification_conv(*config_and_inputs)
def test_model_common_attributes(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
# we overwrite this, as the embeddings of Perceiver are an instance of nn.Parameter
# and Perceiver doesn't support get_output_embeddings
self.assertIsInstance(model.get_input_embeddings(), (nn.Parameter))
def test_training(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
if model_class in [
*get_values(MODEL_MAPPING),
PerceiverForOpticalFlow,
PerceiverForMultimodalAutoencoding,
]:
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_forward_signature(self):
for model_class in self.all_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["inputs"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_determinism(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
first = model(**inputs_dict)[0]
second = model(**inputs_dict)[0]
if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
# model outputs a dictionary with logits per modality, let's verify each modality
for modality in first.keys():
out_1 = first[modality].cpu().numpy()
out_2 = second[modality].cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
else:
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_attention_outputs(self):
seq_len = getattr(self.model_tester, "num_latents", None)
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
config.return_dict = True
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self_attentions = outputs.attentions
cross_attentions = outputs.cross_attentions
# check expected number of attentions depending on model class
expected_num_self_attentions = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block
if model.__class__.__name__ == "PerceiverModel":
# we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder
expected_num_cross_attentions = 1
else:
# we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder
expected_num_cross_attentions = 2
self.assertEqual(len(self_attentions), expected_num_self_attentions)
self.assertEqual(len(cross_attentions), expected_num_cross_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self_attentions = outputs.attentions
cross_attentions = outputs.cross_attentions
self.assertEqual(len(self_attentions), expected_num_self_attentions)
self.assertEqual(len(cross_attentions), expected_num_cross_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_self_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_self_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_self_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block + 1
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.num_latents
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.d_latents],
)
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_model_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
# optical flow + multimodal models don't support training for now
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
# optical flow + multimodal models don't support training for now
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
# optical flow + multimodal models don't support training for now
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]:
# optical flow + multimodal models don't support training for now
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
)
def test_retain_grad_hidden_states_attentions(self):
# no need to test all models as different heads yield the same functionality
model_class = PerceiverForMaskedLM
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
config.output_hidden_states = True
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
# Encoder-only model
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_feed_forward_chunking(self):
for model_class in self.all_model_classes:
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
torch.manual_seed(0)
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model.eval()
hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
torch.manual_seed(0)
config.chunk_size_feed_forward = 1
model = model_class(config)
model.to(torch_device)
model.eval()
hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
# model outputs a dictionary with logits for each modality
for modality in hidden_states_no_chunk.keys():
self.assertTrue(
torch.allclose(hidden_states_no_chunk[modality], hidden_states_with_chunk[modality], atol=1e-3)
)
else:
self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))
def test_save_load(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if model_class.__name__ == "PerceiverForMultimodalAutoencoding":
for modality in outputs[0].keys():
out_2 = outputs[0][modality].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
with torch.no_grad():
after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# Make sure we don't have nans
out_1 = after_outputs[0][modality].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
else:
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
with torch.no_grad():
after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# Make sure we don't have nans
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_correct_missing_keys(self):
if not self.test_missing_keys:
return
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# most Perceiver models don't have a typical head like is the case with BERT
if model_class in [
PerceiverForOpticalFlow,
PerceiverForMultimodalAutoencoding,
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
]:
continue
model = model_class(config)
base_model_prefix = model.base_model_prefix
if hasattr(model, base_model_prefix):
with tempfile.TemporaryDirectory() as temp_dir_name:
model.base_model.save_pretrained(temp_dir_name)
model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
self.assertGreater(len(loading_info["missing_keys"]), 0)
def test_problem_types(self):
problem_types = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
continue
config, inputs, input_mask, _, _ = self.model_tester.prepare_config_and_inputs(model_class=model_class)
inputs_dict = {"inputs": inputs, "attention_mask": input_mask}
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
config.problem_type = problem_type["title"]
config.num_labels = problem_type["num_labels"]
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
if problem_type["num_labels"] > 1:
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])
inputs["labels"] = inputs["labels"].to(problem_type["dtype"])
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=True) as warning_list:
loss = model(**inputs).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}"
)
loss.backward()
@require_torch_multi_gpu
@unittest.skip(
reason=(
"Perceiver does not work with data parallel (DP) because of a bug in PyTorch:"
" https://github.com/pytorch/pytorch/issues/36035"
)
)
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT")
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="Perceiver doesn't support resize_token_embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Perceiver doesn't support resize_token_embeddings")
def test_resize_embeddings_untied(self):
pass
@unittest.skip(reason="Perceiver doesn't support inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Perceiver doesn't support the AutoModel API")
def test_load_with_mismatched_shapes(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = PerceiverModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
# Helper functions for optical flow integration test
def prepare_optical_flow_images():
dataset = load_dataset("hf-internal-testing/fixtures_sintel", split="test")
image1 = Image.open(dataset[0]["file"]).convert("RGB")
image2 = Image.open(dataset[0]["file"]).convert("RGB")
return image1, image2
def normalize(img):
return img / 255.0 * 2 - 1
def extract_image_patches(x, kernel, stride=1, dilation=1):
# Do TF 'SAME' Padding
b, c, h, w = x.shape
h2 = math.ceil(h / stride)
w2 = math.ceil(w / stride)
pad_row = (h2 - 1) * stride + (kernel - 1) * dilation + 1 - h
pad_col = (w2 - 1) * stride + (kernel - 1) * dilation + 1 - w
x = torch.nn.functional.pad(x, (pad_row // 2, pad_row - pad_row // 2, pad_col // 2, pad_col - pad_col // 2))
# Extract patches
patches = x.unfold(2, kernel, stride).unfold(3, kernel, stride)
patches = patches.permute(0, 4, 5, 1, 2, 3).contiguous()
return patches.view(b, -1, patches.shape[-2], patches.shape[-1])
@require_torch
@require_vision
class PerceiverModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
tokenizer = PerceiverTokenizer.from_pretrained("deepmind/language-perceiver")
model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver")
model.to(torch_device)
# prepare inputs
text = "This is an incomplete sentence where some words are missing."
encoding = tokenizer(text, padding="max_length", return_tensors="pt")
# mask " missing.".
encoding.input_ids[0, 52:61] = tokenizer.mask_token_id
inputs, input_mask = encoding.input_ids.to(torch_device), encoding.attention_mask.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(inputs=inputs, attention_mask=input_mask)
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, tokenizer.model_max_length, tokenizer.vocab_size))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-10.8609, -10.7651, -10.9187], [-12.1689, -11.9389, -12.1479], [-12.1518, -11.9707, -12.2073]],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4))
expected_greedy_predictions = [38, 115, 111, 121, 121, 111, 116, 109, 52]
masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist()
self.assertListEqual(expected_greedy_predictions, masked_tokens_predictions)
@slow
def test_inference_image_classification(self):
feature_extractor = PerceiverFeatureExtractor()
model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned")
model.to(torch_device)
# prepare inputs
image = prepare_img()
inputs = feature_extractor(image, return_tensors="pt").pixel_values.to(torch_device)
input_mask = None
# forward pass
with torch.no_grad():
outputs = model(inputs=inputs, attention_mask=input_mask)
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, model.config.num_labels))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([-1.1652, -0.1992, -0.7520], device=torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_image_classification_fourier(self):
feature_extractor = PerceiverFeatureExtractor()
model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier")
model.to(torch_device)
# prepare inputs
image = prepare_img()
inputs = feature_extractor(image, return_tensors="pt").pixel_values.to(torch_device)
input_mask = None
# forward pass
with torch.no_grad():
outputs = model(inputs=inputs, attention_mask=input_mask)
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, model.config.num_labels))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([-1.1295, -0.2832, 0.3226], device=torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_image_classification_conv(self):
feature_extractor = PerceiverFeatureExtractor()
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
model.to(torch_device)
# prepare inputs
image = prepare_img()
inputs = feature_extractor(image, return_tensors="pt").pixel_values.to(torch_device)
input_mask = None
# forward pass
with torch.no_grad():
outputs = model(inputs=inputs, attention_mask=input_mask)
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, model.config.num_labels))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([-1.1186, 0.0554, 0.0897], device=torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_optical_flow(self):
model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver")
model.to(torch_device)
# prepare inputs
image1, image2 = prepare_optical_flow_images()
img1 = normalize(np.array(image1))
img2 = normalize(np.array(image1))
# stack images
img1 = torch.tensor(np.moveaxis(img1, -1, 0))
img2 = torch.tensor(np.moveaxis(img2, -1, 0))
images = torch.stack([img1, img2], dim=0)
# extract 3x3 patches
patch_size = model.config.train_size
inputs = images[..., : patch_size[0], : patch_size[1]].unsqueeze(0)
batch_size, _, C, H, W = inputs.shape
patches = extract_image_patches(inputs.view(batch_size * 2, C, H, W), kernel=3)
_, C, H, W = patches.shape
patches = patches.view(batch_size, -1, C, H, W).float()
# forward pass
with torch.no_grad():
outputs = model(inputs=patches.to(torch_device))
logits = outputs.logits
# verify logits
expected_shape = torch.Size((1, 368, 496, 2))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[[0.0025, -0.0050], [0.0025, -0.0049], [0.0025, -0.0048]],
[[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0047]],
[[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0046]],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
|