File size: 17,044 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow, tooslow

from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_tf_available():
    import tensorflow as tf

    from transformers import GPT2Tokenizer, TFOPTForCausalLM, TFOPTModel


def prepare_opt_inputs_dict(config, input_ids, attention_mask=None, head_mask=None):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    return {"input_ids": input_ids, "attention_mask": attention_mask}


@require_tf
class TFOPTModelTester:
    config_cls = OPTConfig
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
        embed_dim=16,
        word_embed_proj_dim=16,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.embed_dim = embed_dim
        self.word_embed_proj_dim = word_embed_proj_dim
        self.is_encoder_decoder = False

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            embed_dim=self.embed_dim,
            word_embed_proj_dim=self.word_embed_proj_dim,
            is_encoder_decoder=False,
            **self.config_updates,
        )
        inputs_dict = prepare_opt_inputs_dict(config, input_ids)
        return config, inputs_dict

    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFOPTModel(config=config)
        input_ids = inputs_dict["input_ids"]

        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)


@require_tf
class TFOPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
    all_generative_model_classes = (TFOPTForCausalLM,) if is_tf_available() else ()
    pipeline_model_mapping = (
        {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {}
    )
    is_encoder_decoder = False
    test_pruning = False
    test_onnx = False
    onnx_min_opset = 10

    def setUp(self):
        self.model_tester = TFOPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=OPTConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
            else:
                x = model.get_output_embeddings()
                assert x is None

    def test_resize_token_embeddings(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def _get_word_embedding_weight(model, embedding_layer):
            if hasattr(embedding_layer, "weight"):
                return embedding_layer.weight
            else:
                # Here we build the word embeddings weights if not exists.
                # And then we retry to get the attribute once built.
                model(model.dummy_inputs)
                if hasattr(embedding_layer, "weight"):
                    return embedding_layer.weight
                else:
                    return None

        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10]:
                # build the embeddings
                model = model_class(config=config)
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # reshape the embeddings
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
                assert_size = size if size is not None else config.vocab_size

                self.assertEqual(new_input_embeddings.shape[0], assert_size)

                # check that weights remain the same after resizing
                models_equal = True
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

    @tooslow
    def test_saved_model_creation(self):
        pass


def _long_tensor(tok_lst):
    return tf.constant(tok_lst, dtype=tf.int32)


@require_tf
class TFOPTHeadTests(unittest.TestCase):
    vocab_size = 99

    def _get_config_and_data(self):
        eos_column_vector = tf.ones((4, 1), dtype=tf.int32) * 2
        input_ids = tf.concat([ids_tensor((4, 6), self.vocab_size - 3) + 3, eos_column_vector], axis=1)
        batch_size = input_ids.shape[0]
        config = OPTConfig(
            vocab_size=self.vocab_size,
            hidden_size=24,
            num_hidden_layers=2,
            num_attention_heads=2,
            ffn_dim=32,
            max_position_embeddings=48,
            eos_token_id=2,
            pad_token_id=1,
            bos_token_id=0,
        )
        return config, input_ids, batch_size


@require_sentencepiece
@require_tf
class OPTModelIntegrationTests(unittest.TestCase):
    @slow
    def test_inference_no_head(self):
        model = TFOPTModel.from_pretrained("facebook/opt-350m")
        input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        attention_mask = tf.not_equal(input_ids, model.config.pad_token_id)
        with tf.GradientTape():
            output = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
        expected_shape = (1, 11, 512)
        self.assertEqual(output.shape, expected_shape)
        expected_slice = tf.constant(
            [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]]
        )
        self.assertTrue(np.allclose(output[:, :3, :3], expected_slice, atol=4e-3))

        xla_generate = tf.function(model, jit_compile=True)
        output = xla_generate(input_ids, attention_mask)[0]
        self.assertTrue(np.allclose(output[:, :3, :3], expected_slice, atol=4e-2))


@require_tf
@slow
class TFOPTEmbeddingsTest(unittest.TestCase):
    def setUp(self):
        super().setUp()
        self.path_model = "facebook/opt-350m"

    def test_logits(self):
        model = TFOPTForCausalLM.from_pretrained(self.path_model)
        tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)

        prompts = [
            "Today is a beautiful day and I want to",
            "In the city of",
            "Paris is the capital of France and",
            "Computers and mobile phones have taken",
        ]
        # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
        inputs = tokenizer(prompts, return_tensors="tf", padding=True, add_special_tokens=False)
        logits = tf.math.reduce_mean(model(inputs.input_ids, attention_mask=inputs.attention_mask)[0], axis=-1)
        logits_meta = tf.constant(
            [
                [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
                [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
                [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
                [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
            ]
        )
        self.assertTrue(np.allclose(logits, logits_meta, atol=1e-4))

        xla_generate = tf.function(model, jit_compile=True)
        logits = tf.math.reduce_mean(xla_generate(inputs.input_ids, attention_mask=inputs.attention_mask)[0], axis=-1)
        self.assertTrue(np.allclose(logits, logits_meta, atol=1e-4))


@require_tf
@slow
class TFOPTGenerationTest(unittest.TestCase):
    @property
    def prompts(self):
        return [
            "Today is a beautiful day and I want",
            "In the city of",
            "Paris is the capital of France and",
            "Computers and mobile phones have taken",
        ]

    def test_generation_pre_attn_layer_norm(self):
        model_id = "facebook/opt-125m"

        EXPECTED_OUTPUTS = [
            "Today is a beautiful day and I want to",
            "In the city of New York, the city",
            "Paris is the capital of France and the capital",
            "Computers and mobile phones have taken over the",
        ]

        predicted_outputs = []
        tokenizer = GPT2Tokenizer.from_pretrained(model_id)
        model = TFOPTForCausalLM.from_pretrained(model_id)

        for prompt in self.prompts:
            input_ids = tokenizer(prompt, return_tensors="tf").input_ids

            generated_ids = model.generate(input_ids, max_length=10)

            generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
            predicted_outputs += generated_string

        self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)

    def test_batch_generation(self):
        model_id = "facebook/opt-350m"

        tokenizer = GPT2Tokenizer.from_pretrained(model_id)
        model = TFOPTForCausalLM.from_pretrained(model_id)

        tokenizer.padding_side = "left"

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="tf", padding=True)
        input_ids = inputs["input_ids"]

        outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"])

        inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
            tf.cast(inputs["attention_mask"][-1], tf.int64)
        )
        inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a dork.\nI'm a little bit",
            "Today, I was in the middle of a conversation with a friend about the",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])

    def test_generation_post_attn_layer_norm(self):
        model_id = "facebook/opt-350m"

        EXPECTED_OUTPUTS = [
            "Today is a beautiful day and I want to",
            "In the city of San Francisco, the city",
            "Paris is the capital of France and the capital",
            "Computers and mobile phones have taken over the",
        ]

        predicted_outputs = []
        tokenizer = GPT2Tokenizer.from_pretrained(model_id)
        model = TFOPTForCausalLM.from_pretrained(model_id)

        for prompt in self.prompts:
            input_ids = tokenizer(prompt, return_tensors="tf").input_ids

            generated_ids = model.generate(input_ids, max_length=10)

            generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
            predicted_outputs += generated_string

        self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)