File size: 2,867 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team, Microsoft Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import unittest

from transformers import MPNetTokenizerFast
from transformers.models.mpnet.tokenization_mpnet import VOCAB_FILES_NAMES, MPNetTokenizer
from transformers.testing_utils import require_tokenizers, slow

from ...test_tokenization_common import TokenizerTesterMixin


@require_tokenizers
class MPNetTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = MPNetTokenizer
    rust_tokenizer_class = MPNetTokenizerFast
    test_rust_tokenizer = True
    space_between_special_tokens = True

    def setUp(self):
        super().setUp()

        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def get_input_output_texts(self, tokenizer):
        input_text = "UNwant\u00E9d,running"
        output_text = "unwanted, running"
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = self.tokenizer_class(self.vocab_file)

        tokens = tokenizer.tokenize("UNwant\u00E9d,running")
        self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])

    @slow
    def test_sequence_builders(self):
        tokenizer = self.tokenizer_class.from_pretrained("microsoft/mpnet-base")

        text = tokenizer.encode("sequence builders", add_special_tokens=False)
        text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)

        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        assert encoded_sentence == [0] + text + [2]
        assert encoded_pair == [0] + text + [2] + [2] + text_2 + [2]