File size: 6,385 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import shutil
import tempfile
import unittest

from transformers import MCTCTProcessor, is_speech_available, is_torch_available
from transformers.file_utils import FEATURE_EXTRACTOR_NAME
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES, Wav2Vec2CTCTokenizer
from transformers.testing_utils import require_torch, require_torchaudio


if is_speech_available() and is_torch_available():
    from transformers import MCTCTFeatureExtractor

    from .test_feature_extraction_mctct import floats_list


@require_torch
@require_torchaudio
class MCTCTProcessorTest(unittest.TestCase):
    def setUp(self):
        vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ")
        vocab_tokens = dict(zip(vocab, range(len(vocab))))

        self.add_kwargs_tokens_map = {
            "pad_token": "<pad>",
            "unk_token": "<unk>",
            "bos_token": "<s>",
            "eos_token": "</s>",
        }
        feature_extractor_map = {
            "feature_size": 1,
            "padding_value": 0.0,
            "sampling_rate": 16000,
            "return_attention_mask": False,
            "do_normalize": True,
        }

        self.tmpdirname = tempfile.mkdtemp()
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")

        with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(feature_extractor_map) + "\n")

    def get_tokenizer(self, **kwargs_init):
        kwargs = self.add_kwargs_tokens_map.copy()
        kwargs.update(kwargs_init)
        return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_feature_extractor(self, **kwargs):
        return MCTCTFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        processor.save_pretrained(self.tmpdirname)
        processor = MCTCTProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
        self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
        self.assertIsInstance(processor.feature_extractor, MCTCTFeatureExtractor)

    def test_save_load_pretrained_additional_features(self):
        processor = MCTCTProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)

        processor = MCTCTProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, MCTCTFeatureExtractor)

    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        raw_speech = floats_list((3, 1000))

        input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
        input_processor = processor(raw_speech, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "This is a test string"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_tokenizer_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)

    def test_model_input_names(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        self.assertListEqual(
            processor.model_input_names,
            feature_extractor.model_input_names,
            msg="`processor` and `feature_extractor` model input names do not match",
        )