File size: 26,520 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MCTCT model. """

import inspect
import math
import unittest

from datasets import load_dataset

from transformers import MCTCTConfig, is_torch_available
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import MCTCTForCTC, MCTCTModel, MCTCTProcessor


class MCTCTModelTester:
    def __init__(
        self,
        parent,
        batch_size=10,
        seq_length=40,  # speech is longer
        is_training=False,
        vocab_size=32,
        hidden_size=128 * 4,
        num_hidden_layers=4,
        intermediate_size=20,
        num_attention_heads=4,
        attention_head_dim=128,
        max_position_embeddings=920,
        layer_norm_eps=1e-5,
        layerdrop=0.3,
        hidden_act="relu",
        initializer_range=0.02,
        hidden_dropout_prob=0.3,
        attention_probs_dropout_prob=0.3,
        conv_glu_dim=1,
        conv_dropout=0.3,
        num_conv_layers=1,
        conv_kernel=(7,),
        conv_stride=(3,),
        input_feat_per_channel=80,
        input_channels=1,
        conv_channels=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length  # speech is longer
        self.is_training = is_training

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.intermediate_size = intermediate_size
        self.num_attention_heads = num_attention_heads

        self.attention_head_dim = attention_head_dim
        self.max_position_embeddings = max_position_embeddings

        self.layer_norm_eps = layer_norm_eps
        self.layerdrop = layerdrop
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob

        self.conv_glu_dim = conv_glu_dim
        self.conv_dropout = conv_dropout
        self.num_conv_layers = num_conv_layers
        self.conv_kernel = conv_kernel
        self.conv_stride = conv_stride
        self.input_feat_per_channel = input_feat_per_channel
        self.input_channels = input_channels
        self.conv_channels = conv_channels

        output_seq_length = self.seq_length
        dilation = 1
        for _, kernel_sz, stride in zip(range(self.num_conv_layers), self.conv_kernel, self.conv_stride):
            padding = kernel_sz // 2
            output_seq_length = output_seq_length + 2 * padding - dilation * (kernel_sz - 1) - 1
            output_seq_length = torch.div(output_seq_length, stride, rounding_mode="trunc") + 1

        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

    def prepare_config_and_inputs(self):
        input_features = floats_tensor(
            [self.batch_size, self.seq_length, self.input_feat_per_channel], self.vocab_size
        )
        attention_mask = torch.ones([self.batch_size, self.seq_length], dtype=torch.long, device=torch_device)

        config = self.get_config()

        return config, input_features, attention_mask

    def get_config(self):
        return MCTCTConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            intermediate_size=self.intermediate_size,
            num_attention_heads=self.num_attention_heads,
            attention_head_dim=self.attention_head_dim,
            max_position_embeddings=self.max_position_embeddings,
            layer_norm_eps=self.layer_norm_eps,
            layerdrop=self.layerdrop,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            conv_glu_dim=self.conv_glu_dim,
            conv_dropout=self.conv_dropout,
            num_conv_layers=self.num_conv_layers,
            conv_kernel=self.conv_kernel,
            conv_stride=self.conv_stride,
            input_feat_per_channel=self.input_feat_per_channel,
            input_channels=self.input_channels,
            conv_channels=self.conv_channels,
        )

    def create_and_check_model(self, config, input_features, attention_mask):
        model = MCTCTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_features, attention_mask=attention_mask)

        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

    def create_and_check_model_for_ctc(self, config, input_features, attention_mask):
        config.add_adapter = True
        config.output_hidden_size = 2 * config.hidden_size
        model = MCTCTForCTC(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_features, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.adapter_output_seq_length, self.vocab_size)
        )

    def create_and_check_batch_inference(self, config, input_features, *args):
        # test does not pass for models making use of `group_norm`
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = MCTCTModel(config=config)
        model.to(torch_device)
        model.eval()

        input_features = input_features[:3]
        attention_mask = torch.ones(input_features.shape[:-1], device=torch_device, dtype=torch.bool)

        input_lengths = [input_features.shape[-1] // i for i in [2, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_features[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_features, attention_mask=attention_mask).last_hidden_state

        for i in range(input_features.shape[0]):
            input_slice = input_features[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))

    def check_ctc_loss(self, config, input_features, *args):
        model = MCTCTForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_features = input_features[:3]

        # input_features is a 2D window for each sequence
        attention_mask = torch.ones(input_features.shape[:-1], device=torch_device, dtype=torch.long)

        # -2 since input_features is a 2D window for each sequence in batch
        input_lengths = [input_features.shape[-2] // i for i in [2, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_features.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
        # pad input
        for i in range(len(input_lengths)):
            input_features[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        model.config.ctc_loss_reduction = "sum"
        sum_loss = model(input_features, attention_mask=attention_mask, labels=labels).loss.item()

        model.config.ctc_loss_reduction = "mean"
        mean_loss = model(input_features, attention_mask=attention_mask, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(sum_loss, float))
        self.parent.assertTrue(isinstance(mean_loss, float))

    def check_ctc_training(self, config, input_features, *args):
        config.ctc_zero_infinity = True
        model = MCTCTForCTC(config=config)
        model.to(torch_device)
        model.train()

        input_features = input_features[:3]

        input_lengths = [input_features.shape[-2] // i for i in [2, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_features.shape[0], max(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_features[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
                # it's important that we make sure that target lenghts are at least
                # one shorter than logit lenghts to prevent -inf
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_features, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

    def check_labels_out_of_vocab(self, config, input_features, *args):
        model = MCTCTForCTC(config)
        model.to(torch_device)
        model.train()

        input_features = input_features[:3]

        input_lengths = [input_features.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_features.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

        with self.parent.assertRaises(ValueError):
            model(input_features, labels=labels)

    def prepare_config_and_inputs_for_common(self):
        config, input_features, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_features": input_features, "attention_mask": attention_mask}
        return config, inputs_dict


@require_torch
class MCTCTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (MCTCTForCTC, MCTCTModel) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"automatic-speech-recognition": MCTCTForCTC, "feature-extraction": MCTCTModel} if is_torch_available() else {}
    )
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = MCTCTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MCTCTConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

    def test_ctc_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

    # MCTCT has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_features`
    def test_forward_signature(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = [
                "input_features",
                "attention_mask",
                "head_mask",
                "output_attentions",
                "output_hidden_states",
                "return_dict",
            ]
            self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

    # MCTCT cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # MCTCT has no inputs_embeds
    def test_model_common_attributes(self):
        pass

    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True
        config.layerdrop = 0.0

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        input_features = inputs_dict["input_features"]

        input_lengths = torch.tensor(
            [input_features.shape[1] for _ in range(input_features.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_features.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
                    "objective.weight",
                ]
                if param.requires_grad:
                    if any([x in name for x in uniform_init_parms]):
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "weight_g") and module.weight_g is not None:
            module.weight_g.data.fill_(3)
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)

    @slow
    def test_model_from_pretrained(self):
        model = MCTCTModel.from_pretrained("speechbrain/m-ctc-t-large")
        self.assertIsNotNone(model)


@require_torch
class MCTCTRobustModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (MCTCTForCTC, MCTCTModel) if is_torch_available() else ()
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = MCTCTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MCTCTConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

    def test_ctc_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

    # MCTCT has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_features`
    def test_forward_signature(self):
        pass

    # MCTCT cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # MCTCT has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_features = inputs_dict["input_features"]

        input_lengths = torch.tensor(
            [input_features.shape[1] for _ in range(input_features.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_features.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
                    "objective.weight",
                ]
                if param.requires_grad:
                    if any([x in name for x in uniform_init_parms]):
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "weight_g") and module.weight_g is not None:
            module.weight_g.data.fill_(3)
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)

    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model = MCTCTModel.from_pretrained("speechbrain/m-ctc-t-large")
        self.assertIsNotNone(model)


@require_torch
@require_soundfile
@slow
class MCTCTModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]

        return [x["array"] for x in speech_samples]

    def test_inference_ctc_normal(self):
        model = MCTCTForCTC.from_pretrained("speechbrain/m-ctc-t-large")
        model.to(torch_device)
        processor = MCTCTProcessor.from_pretrained("speechbrain/m-ctc-t-large", do_lower_case=True)
        input_speech = self._load_datasamples(1)

        input_features = processor(input_speech, return_tensors="pt").input_features.to(torch_device)

        with torch.no_grad():
            logits = model(input_features).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe, sir, i exist."]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

    def test_inference_ctc_normal_batched(self):
        model = MCTCTForCTC.from_pretrained("speechbrain/m-ctc-t-large")
        model.to(torch_device)
        processor = MCTCTProcessor.from_pretrained("speechbrain/m-ctc-t-large", do_lower_case=True)

        input_speech = self._load_datasamples(2)

        inputs = processor(input_speech, return_tensors="pt", padding=True)

        input_features = inputs.input_features.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        with torch.no_grad():
            logits = model(input_features, attention_mask=attention_mask).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe, sir, i exist.",
            '"sweat-covered brion\'s body, trickling into the tight-lowing clossa was the only germent huor."',
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

    def test_inference_ctc_robust_batched(self):
        model = MCTCTForCTC.from_pretrained("speechbrain/m-ctc-t-large").to(torch_device)
        processor = MCTCTProcessor.from_pretrained("speechbrain/m-ctc-t-large", do_lower_case=True)

        input_speech = self._load_datasamples(4)

        inputs = processor(input_speech, return_tensors="pt", padding=True, return_attention_mask=True)

        input_features = inputs.input_features.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        with torch.no_grad():
            logits = model(input_features, attention_mask=attention_mask).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe, sir, i exist.",
            '"sweat-covered brion\'s body, trickling into the tight-lowing clossa was the only germent huor." "',
            "\"the cadona's chest still-dripping bloodthe acofis overstrained eyes, even the soring arena around him"
            " with thousands of spectators retrivialities not worth-thinking about.",
            "his instant panic was followed by a small sharp blow high on his chestr.",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)