File size: 31,845 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import shutil
import tempfile
import unittest
from typing import List

from transformers import (
    MarkupLMProcessor,
    MarkupLMTokenizer,
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
)
from transformers.models.markuplm.tokenization_markuplm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_bs4, require_tokenizers, require_torch, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, cached_property, is_bs4_available, is_tokenizers_available


if is_bs4_available():
    from transformers import MarkupLMFeatureExtractor

if is_tokenizers_available():
    from transformers import MarkupLMTokenizerFast


@require_bs4
@require_tokenizers
class MarkupLMProcessorTest(unittest.TestCase):
    tokenizer_class = MarkupLMTokenizer
    rust_tokenizer_class = MarkupLMTokenizerFast

    def setUp(self):
        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
        # fmt: off
        vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "\u0120hello", "\u0120world", "<unk>",]  # noqa
        # fmt: on
        self.tmpdirname = tempfile.mkdtemp()
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.tags_dict = {"a": 0, "abbr": 1, "acronym": 2, "address": 3}
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        self.tokenizer_config_file = os.path.join(self.tmpdirname, "tokenizer_config.json")

        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))
        with open(self.tokenizer_config_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps({"tags_dict": self.tags_dict}))

        feature_extractor_map = {"feature_extractor_type": "MarkupLMFeatureExtractor"}
        self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
        with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(feature_extractor_map) + "\n")

    def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def get_tokenizers(self, **kwargs) -> List[PreTrainedTokenizerBase]:
        return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]

    def get_feature_extractor(self, **kwargs):
        return MarkupLMFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def test_save_load_pretrained_default(self):
        feature_extractor = self.get_feature_extractor()
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)

            processor.save_pretrained(self.tmpdirname)
            processor = MarkupLMProcessor.from_pretrained(self.tmpdirname)

            self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
            self.assertIsInstance(processor.tokenizer, (MarkupLMTokenizer, MarkupLMTokenizerFast))

            self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
            self.assertIsInstance(processor.feature_extractor, MarkupLMFeatureExtractor)

    def test_save_load_pretrained_additional_features(self):
        processor = MarkupLMProcessor(feature_extractor=self.get_feature_extractor(), tokenizer=self.get_tokenizer())
        processor.save_pretrained(self.tmpdirname)

        # slow tokenizer
        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(do_resize=False, size=30)

        processor = MarkupLMProcessor.from_pretrained(
            self.tmpdirname, use_fast=False, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, MarkupLMTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, MarkupLMFeatureExtractor)

        # fast tokenizer
        tokenizer_add_kwargs = self.get_rust_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(do_resize=False, size=30)

        processor = MarkupLMProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, MarkupLMTokenizerFast)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, MarkupLMFeatureExtractor)

    def test_model_input_names(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = MarkupLMProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        self.assertListEqual(
            processor.model_input_names,
            tokenizer.model_input_names,
            msg="`processor` and `tokenizer` model input names do not match",
        )


# different use cases tests
@require_bs4
@require_torch
class MarkupLMProcessorIntegrationTests(unittest.TestCase):
    @cached_property
    def get_html_strings(self):
        html_string_1 = """
        <!DOCTYPE html>
        <html>
        <head>
        <title>Hello world</title>
        </head>
        <body>

        <h1>Welcome</h1>
        <p>Here is my website.</p>

        </body>
        </html>"""

        html_string_2 = """
        <!DOCTYPE html>
        <html>
        <body>

        <h2>HTML Images</h2>
        <p>HTML images are defined with the img tag:</p>

        <img src="w3schools.jpg" alt="W3Schools.com" width="104" height="142">

        </body>
        </html>
        """

        return [html_string_1, html_string_2]

    @cached_property
    def get_tokenizers(self):
        slow_tokenizer = MarkupLMTokenizer.from_pretrained("microsoft/markuplm-base")
        fast_tokenizer = MarkupLMTokenizerFast.from_pretrained("microsoft/markuplm-base", from_slow=True)
        return [slow_tokenizer, fast_tokenizer]

    @slow
    def test_processor_case_1(self):
        # case 1: web page classification (training, inference) + token classification (inference)

        feature_extractor = MarkupLMFeatureExtractor()
        tokenizers = self.get_tokenizers
        html_strings = self.get_html_strings

        for tokenizer in tokenizers:
            processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)

            # not batched
            inputs = processor(html_strings[0], return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
            actual_keys = sorted(inputs.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected = [0, 31414, 232, 25194, 11773, 16, 127, 998, 4, 2]
            self.assertSequenceEqual(inputs.input_ids.squeeze().tolist(), expected)

            # batched
            inputs = processor(html_strings, padding=True, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
            actual_keys = sorted(inputs.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected = [0, 48085, 2209, 48085, 3156, 32, 6533, 19, 5, 48599, 6694, 35, 2]
            self.assertSequenceEqual(inputs.input_ids[1].tolist(), expected)

    @slow
    def test_processor_case_2(self):
        # case 2: web page classification (training, inference) + token classification (inference), parse_html=False

        feature_extractor = MarkupLMFeatureExtractor()
        tokenizers = self.get_tokenizers

        for tokenizer in tokenizers:
            processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
            processor.parse_html = False

            # not batched
            nodes = ["hello", "world", "how", "are"]
            xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
            inputs = processor(nodes=nodes, xpaths=xpaths, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
            actual_keys = list(inputs.keys())
            for key in expected_keys:
                self.assertIn(key, actual_keys)

            # verify input_ids
            expected_decoding = "<s>helloworldhoware</s>"
            decoding = processor.decode(inputs.input_ids.squeeze().tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # batched
            nodes = [["hello", "world"], ["my", "name", "is"]]
            xpaths = [
                ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"],
                ["html/body", "html/body/div", "html/body"],
            ]
            inputs = processor(nodes=nodes, xpaths=xpaths, padding=True, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
            actual_keys = sorted(inputs.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_decoding = "<s>helloworld</s><pad>"
            decoding = processor.decode(inputs.input_ids[0].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

    @slow
    def test_processor_case_3(self):
        # case 3: token classification (training), parse_html=False

        feature_extractor = MarkupLMFeatureExtractor()
        tokenizers = self.get_tokenizers

        for tokenizer in tokenizers:
            processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
            processor.parse_html = False

            # not batched
            nodes = ["hello", "world", "how", "are"]
            xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
            node_labels = [1, 2, 2, 1]
            inputs = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt")

            # verify keys
            expected_keys = [
                "attention_mask",
                "input_ids",
                "labels",
                "token_type_ids",
                "xpath_subs_seq",
                "xpath_tags_seq",
            ]
            actual_keys = sorted(inputs.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_ids = [0, 42891, 8331, 9178, 1322, 2]
            self.assertSequenceEqual(inputs.input_ids[0].tolist(), expected_ids)

            # verify labels
            expected_labels = [-100, 1, 2, 2, 1, -100]
            self.assertListEqual(inputs.labels.squeeze().tolist(), expected_labels)

            # batched
            nodes = [["hello", "world"], ["my", "name", "is"]]
            xpaths = [
                ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"],
                ["html/body", "html/body/div", "html/body"],
            ]
            node_labels = [[1, 2], [6, 3, 10]]
            inputs = processor(
                nodes=nodes,
                xpaths=xpaths,
                node_labels=node_labels,
                padding="max_length",
                max_length=20,
                truncation=True,
                return_tensors="pt",
            )

            # verify keys
            expected_keys = [
                "attention_mask",
                "input_ids",
                "labels",
                "token_type_ids",
                "xpath_subs_seq",
                "xpath_tags_seq",
            ]
            actual_keys = sorted(inputs.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_ids = [0, 4783, 13650, 354, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
            self.assertSequenceEqual(inputs.input_ids[1].tolist(), expected_ids)

            # verify xpath_tags_seq
            # fmt: off
            expected_xpaths_tags_seq = [[216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [109, 25, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [109, 25, 50, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [109, 25, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216]]  # noqa: 
            # fmt: on
            self.assertSequenceEqual(inputs.xpath_tags_seq[1].tolist(), expected_xpaths_tags_seq)

            # verify labels
            # fmt: off
            expected_labels = [-100, 6, 3, 10, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100]
            # fmt: on
            self.assertListEqual(inputs.labels[1].tolist(), expected_labels)

    @slow
    def test_processor_case_4(self):
        # case 4: question answering (inference), parse_html=True

        feature_extractor = MarkupLMFeatureExtractor()
        tokenizers = self.get_tokenizers
        html_strings = self.get_html_strings

        for tokenizer in tokenizers:
            processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)

            # not batched
            question = "What's his name?"
            inputs = processor(html_strings[0], questions=question, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
            actual_keys = sorted(inputs.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            # fmt: off
            expected_decoding = "<s>What's his name?</s>Hello worldWelcomeHere is my website.</s>"  # noqa: E231
            # fmt: on
            decoding = processor.decode(inputs.input_ids.squeeze().tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # batched
            questions = ["How old is he?", "what's the time"]
            inputs = processor(
                html_strings,
                questions=questions,
                padding="max_length",
                max_length=20,
                truncation=True,
                return_tensors="pt",
            )

            # verify keys
            expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
            actual_keys = sorted(inputs.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_decoding = (
                "<s>what's the time</s>HTML ImagesHTML images are defined with the img tag:</s><pad><pad>"
            )
            decoding = processor.decode(inputs.input_ids[1].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # verify xpath_subs_seq
            # fmt: off
            expected_xpath_subs_seq = [[1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001]]
            # fmt: on
            self.assertListEqual(inputs.xpath_subs_seq[1].tolist(), expected_xpath_subs_seq)

    @slow
    def test_processor_case_5(self):
        # case 5: question answering (inference), parse_html=False

        feature_extractor = MarkupLMFeatureExtractor(parse_html=False)
        tokenizers = self.get_tokenizers

        for tokenizer in tokenizers:
            processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
            processor.parse_html = False

            # not batched
            question = "What's his name?"
            nodes = ["hello", "world", "how", "are"]
            xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
            inputs = processor(nodes=nodes, xpaths=xpaths, questions=question, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
            actual_keys = sorted(inputs.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_decoding = "<s>What's his name?</s>helloworldhoware</s>"
            decoding = processor.decode(inputs.input_ids.squeeze().tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # batched
            questions = ["How old is he?", "what's the time"]
            nodes = [["hello", "world"], ["my", "name", "is"]]
            xpaths = [
                ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"],
                ["html/body", "html/body/div", "html/body"],
            ]
            inputs = processor(nodes=nodes, xpaths=xpaths, questions=questions, padding=True, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
            actual_keys = sorted(inputs.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_decoding = "<s>How old is he?</s>helloworld</s>"
            decoding = processor.decode(inputs.input_ids[0].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            expected_decoding = "<s>what's the time</s>mynameis</s>"
            decoding = processor.decode(inputs.input_ids[1].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # verify xpath_subs_seq
            # fmt: off
            expected_xpath_subs_seq = [[1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001]]
            # fmt: on
            self.assertListEqual(inputs.xpath_subs_seq[1].tolist()[-5:], expected_xpath_subs_seq)