Spaces:
Runtime error
Runtime error
File size: 31,845 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from typing import List
from transformers import (
MarkupLMProcessor,
MarkupLMTokenizer,
PreTrainedTokenizer,
PreTrainedTokenizerBase,
PreTrainedTokenizerFast,
)
from transformers.models.markuplm.tokenization_markuplm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_bs4, require_tokenizers, require_torch, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, cached_property, is_bs4_available, is_tokenizers_available
if is_bs4_available():
from transformers import MarkupLMFeatureExtractor
if is_tokenizers_available():
from transformers import MarkupLMTokenizerFast
@require_bs4
@require_tokenizers
class MarkupLMProcessorTest(unittest.TestCase):
tokenizer_class = MarkupLMTokenizer
rust_tokenizer_class = MarkupLMTokenizerFast
def setUp(self):
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
# fmt: off
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "\u0120hello", "\u0120world", "<unk>",] # noqa
# fmt: on
self.tmpdirname = tempfile.mkdtemp()
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.tags_dict = {"a": 0, "abbr": 1, "acronym": 2, "address": 3}
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
self.tokenizer_config_file = os.path.join(self.tmpdirname, "tokenizer_config.json")
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
with open(self.tokenizer_config_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps({"tags_dict": self.tags_dict}))
feature_extractor_map = {"feature_extractor_type": "MarkupLMFeatureExtractor"}
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(feature_extractor_map) + "\n")
def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_tokenizers(self, **kwargs) -> List[PreTrainedTokenizerBase]:
return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]
def get_feature_extractor(self, **kwargs):
return MarkupLMFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
feature_extractor = self.get_feature_extractor()
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.save_pretrained(self.tmpdirname)
processor = MarkupLMProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, (MarkupLMTokenizer, MarkupLMTokenizerFast))
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, MarkupLMFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = MarkupLMProcessor(feature_extractor=self.get_feature_extractor(), tokenizer=self.get_tokenizer())
processor.save_pretrained(self.tmpdirname)
# slow tokenizer
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_resize=False, size=30)
processor = MarkupLMProcessor.from_pretrained(
self.tmpdirname, use_fast=False, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, MarkupLMTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, MarkupLMFeatureExtractor)
# fast tokenizer
tokenizer_add_kwargs = self.get_rust_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_resize=False, size=30)
processor = MarkupLMProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, MarkupLMTokenizerFast)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, MarkupLMFeatureExtractor)
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = MarkupLMProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
self.assertListEqual(
processor.model_input_names,
tokenizer.model_input_names,
msg="`processor` and `tokenizer` model input names do not match",
)
# different use cases tests
@require_bs4
@require_torch
class MarkupLMProcessorIntegrationTests(unittest.TestCase):
@cached_property
def get_html_strings(self):
html_string_1 = """
<!DOCTYPE html>
<html>
<head>
<title>Hello world</title>
</head>
<body>
<h1>Welcome</h1>
<p>Here is my website.</p>
</body>
</html>"""
html_string_2 = """
<!DOCTYPE html>
<html>
<body>
<h2>HTML Images</h2>
<p>HTML images are defined with the img tag:</p>
<img src="w3schools.jpg" alt="W3Schools.com" width="104" height="142">
</body>
</html>
"""
return [html_string_1, html_string_2]
@cached_property
def get_tokenizers(self):
slow_tokenizer = MarkupLMTokenizer.from_pretrained("microsoft/markuplm-base")
fast_tokenizer = MarkupLMTokenizerFast.from_pretrained("microsoft/markuplm-base", from_slow=True)
return [slow_tokenizer, fast_tokenizer]
@slow
def test_processor_case_1(self):
# case 1: web page classification (training, inference) + token classification (inference)
feature_extractor = MarkupLMFeatureExtractor()
tokenizers = self.get_tokenizers
html_strings = self.get_html_strings
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
# not batched
inputs = processor(html_strings[0], return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(inputs.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected = [0, 31414, 232, 25194, 11773, 16, 127, 998, 4, 2]
self.assertSequenceEqual(inputs.input_ids.squeeze().tolist(), expected)
# batched
inputs = processor(html_strings, padding=True, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(inputs.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected = [0, 48085, 2209, 48085, 3156, 32, 6533, 19, 5, 48599, 6694, 35, 2]
self.assertSequenceEqual(inputs.input_ids[1].tolist(), expected)
@slow
def test_processor_case_2(self):
# case 2: web page classification (training, inference) + token classification (inference), parse_html=False
feature_extractor = MarkupLMFeatureExtractor()
tokenizers = self.get_tokenizers
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.parse_html = False
# not batched
nodes = ["hello", "world", "how", "are"]
xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
inputs = processor(nodes=nodes, xpaths=xpaths, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = list(inputs.keys())
for key in expected_keys:
self.assertIn(key, actual_keys)
# verify input_ids
expected_decoding = "<s>helloworldhoware</s>"
decoding = processor.decode(inputs.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
nodes = [["hello", "world"], ["my", "name", "is"]]
xpaths = [
["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"],
["html/body", "html/body/div", "html/body"],
]
inputs = processor(nodes=nodes, xpaths=xpaths, padding=True, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(inputs.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s>helloworld</s><pad>"
decoding = processor.decode(inputs.input_ids[0].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
@slow
def test_processor_case_3(self):
# case 3: token classification (training), parse_html=False
feature_extractor = MarkupLMFeatureExtractor()
tokenizers = self.get_tokenizers
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.parse_html = False
# not batched
nodes = ["hello", "world", "how", "are"]
xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
node_labels = [1, 2, 2, 1]
inputs = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt")
# verify keys
expected_keys = [
"attention_mask",
"input_ids",
"labels",
"token_type_ids",
"xpath_subs_seq",
"xpath_tags_seq",
]
actual_keys = sorted(inputs.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_ids = [0, 42891, 8331, 9178, 1322, 2]
self.assertSequenceEqual(inputs.input_ids[0].tolist(), expected_ids)
# verify labels
expected_labels = [-100, 1, 2, 2, 1, -100]
self.assertListEqual(inputs.labels.squeeze().tolist(), expected_labels)
# batched
nodes = [["hello", "world"], ["my", "name", "is"]]
xpaths = [
["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"],
["html/body", "html/body/div", "html/body"],
]
node_labels = [[1, 2], [6, 3, 10]]
inputs = processor(
nodes=nodes,
xpaths=xpaths,
node_labels=node_labels,
padding="max_length",
max_length=20,
truncation=True,
return_tensors="pt",
)
# verify keys
expected_keys = [
"attention_mask",
"input_ids",
"labels",
"token_type_ids",
"xpath_subs_seq",
"xpath_tags_seq",
]
actual_keys = sorted(inputs.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_ids = [0, 4783, 13650, 354, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
self.assertSequenceEqual(inputs.input_ids[1].tolist(), expected_ids)
# verify xpath_tags_seq
# fmt: off
expected_xpaths_tags_seq = [[216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [109, 25, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [109, 25, 50, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [109, 25, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216], [216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216]] # noqa:
# fmt: on
self.assertSequenceEqual(inputs.xpath_tags_seq[1].tolist(), expected_xpaths_tags_seq)
# verify labels
# fmt: off
expected_labels = [-100, 6, 3, 10, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100]
# fmt: on
self.assertListEqual(inputs.labels[1].tolist(), expected_labels)
@slow
def test_processor_case_4(self):
# case 4: question answering (inference), parse_html=True
feature_extractor = MarkupLMFeatureExtractor()
tokenizers = self.get_tokenizers
html_strings = self.get_html_strings
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
# not batched
question = "What's his name?"
inputs = processor(html_strings[0], questions=question, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(inputs.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
# fmt: off
expected_decoding = "<s>What's his name?</s>Hello worldWelcomeHere is my website.</s>" # noqa: E231
# fmt: on
decoding = processor.decode(inputs.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
questions = ["How old is he?", "what's the time"]
inputs = processor(
html_strings,
questions=questions,
padding="max_length",
max_length=20,
truncation=True,
return_tensors="pt",
)
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(inputs.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = (
"<s>what's the time</s>HTML ImagesHTML images are defined with the img tag:</s><pad><pad>"
)
decoding = processor.decode(inputs.input_ids[1].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# verify xpath_subs_seq
# fmt: off
expected_xpath_subs_seq = [[1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001]]
# fmt: on
self.assertListEqual(inputs.xpath_subs_seq[1].tolist(), expected_xpath_subs_seq)
@slow
def test_processor_case_5(self):
# case 5: question answering (inference), parse_html=False
feature_extractor = MarkupLMFeatureExtractor(parse_html=False)
tokenizers = self.get_tokenizers
for tokenizer in tokenizers:
processor = MarkupLMProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.parse_html = False
# not batched
question = "What's his name?"
nodes = ["hello", "world", "how", "are"]
xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
inputs = processor(nodes=nodes, xpaths=xpaths, questions=question, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(inputs.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s>What's his name?</s>helloworldhoware</s>"
decoding = processor.decode(inputs.input_ids.squeeze().tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# batched
questions = ["How old is he?", "what's the time"]
nodes = [["hello", "world"], ["my", "name", "is"]]
xpaths = [
["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"],
["html/body", "html/body/div", "html/body"],
]
inputs = processor(nodes=nodes, xpaths=xpaths, questions=questions, padding=True, return_tensors="pt")
# verify keys
expected_keys = ["attention_mask", "input_ids", "token_type_ids", "xpath_subs_seq", "xpath_tags_seq"]
actual_keys = sorted(inputs.keys())
self.assertListEqual(actual_keys, expected_keys)
# verify input_ids
expected_decoding = "<s>How old is he?</s>helloworld</s>"
decoding = processor.decode(inputs.input_ids[0].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
expected_decoding = "<s>what's the time</s>mynameis</s>"
decoding = processor.decode(inputs.input_ids[1].tolist())
self.assertSequenceEqual(decoding, expected_decoding)
# verify xpath_subs_seq
# fmt: off
expected_xpath_subs_seq = [[1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [0, 0, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001], [1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001, 1001]]
# fmt: on
self.assertListEqual(inputs.xpath_subs_seq[1].tolist()[-5:], expected_xpath_subs_seq)
|