Spaces:
Runtime error
Runtime error
File size: 6,502 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# XLNet
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=xlnet">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-xlnet-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/xlnet-base-cased">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
## Overview
The XLNet model was proposed in [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
Quoc V. Le. XLnet is an extension of the Transformer-XL model pre-trained using an autoregressive method to learn
bidirectional contexts by maximizing the expected likelihood over all permutations of the input sequence factorization
order.
The abstract from the paper is the following:
*With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves
better performance than pretraining approaches based on autoregressive language modeling. However, relying on
corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a
pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive
pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all
permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive
formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into
pretraining. Empirically, under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large
margin, including question answering, natural language inference, sentiment analysis, and document ranking.*
Tips:
- The specific attention pattern can be controlled at training and test time using the `perm_mask` input.
- Due to the difficulty of training a fully auto-regressive model over various factorization order, XLNet is pretrained
using only a sub-set of the output tokens as target which are selected with the `target_mapping` input.
- To use XLNet for sequential decoding (i.e. not in fully bi-directional setting), use the `perm_mask` and
`target_mapping` inputs to control the attention span and outputs (see examples in
*examples/pytorch/text-generation/run_generation.py*)
- XLNet is one of the few models that has no sequence length limit.
- XLNet is not a traditional autoregressive model but uses a training strategy that builds on that. It permutes the tokens in the sentence, then allows the model to use the last n tokens to predict the token n+1. Since this is all done with a mask, the sentence is actually fed in the model in the right order, but instead of masking the first n tokens for n+1, XLNet uses a mask that hides the previous tokens in some given permutation of 1,…,sequence length.
- XLNet also uses the same recurrence mechanism as Transformer-XL to build long-term dependencies.
This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/zihangdai/xlnet/).
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## XLNetConfig
[[autodoc]] XLNetConfig
## XLNetTokenizer
[[autodoc]] XLNetTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## XLNetTokenizerFast
[[autodoc]] XLNetTokenizerFast
## XLNet specific outputs
[[autodoc]] models.xlnet.modeling_xlnet.XLNetModelOutput
[[autodoc]] models.xlnet.modeling_xlnet.XLNetLMHeadModelOutput
[[autodoc]] models.xlnet.modeling_xlnet.XLNetForSequenceClassificationOutput
[[autodoc]] models.xlnet.modeling_xlnet.XLNetForMultipleChoiceOutput
[[autodoc]] models.xlnet.modeling_xlnet.XLNetForTokenClassificationOutput
[[autodoc]] models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringSimpleOutput
[[autodoc]] models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringOutput
[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetModelOutput
[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetLMHeadModelOutput
[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetForSequenceClassificationOutput
[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetForMultipleChoiceOutput
[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetForTokenClassificationOutput
[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetForQuestionAnsweringSimpleOutput
## XLNetModel
[[autodoc]] XLNetModel
- forward
## XLNetLMHeadModel
[[autodoc]] XLNetLMHeadModel
- forward
## XLNetForSequenceClassification
[[autodoc]] XLNetForSequenceClassification
- forward
## XLNetForMultipleChoice
[[autodoc]] XLNetForMultipleChoice
- forward
## XLNetForTokenClassification
[[autodoc]] XLNetForTokenClassification
- forward
## XLNetForQuestionAnsweringSimple
[[autodoc]] XLNetForQuestionAnsweringSimple
- forward
## XLNetForQuestionAnswering
[[autodoc]] XLNetForQuestionAnswering
- forward
## TFXLNetModel
[[autodoc]] TFXLNetModel
- call
## TFXLNetLMHeadModel
[[autodoc]] TFXLNetLMHeadModel
- call
## TFXLNetForSequenceClassification
[[autodoc]] TFXLNetForSequenceClassification
- call
## TFLNetForMultipleChoice
[[autodoc]] TFXLNetForMultipleChoice
- call
## TFXLNetForTokenClassification
[[autodoc]] TFXLNetForTokenClassification
- call
## TFXLNetForQuestionAnsweringSimple
[[autodoc]] TFXLNetForQuestionAnsweringSimple
- call
|