Spaces:
Build error
Build error
wisdom196473
commited on
Commit
·
ef7b203
1
Parent(s):
656e047
update README
Browse files- .ipynb_checkpoints/README-checkpoint.md +67 -16
- README.md +57 -17
.ipynb_checkpoints/README-checkpoint.md
CHANGED
@@ -1,21 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Amazon E-commerce Visual Assistant
|
2 |
|
3 |
-
A multimodal AI assistant
|
4 |
|
5 |
-
##
|
6 |
|
7 |
-
|
8 |
-
- Product comparisons and recommendations
|
9 |
-
- Visual product recognition
|
10 |
-
- Detailed product information retrieval
|
11 |
-
- Price analysis and comparison
|
12 |
|
13 |
-
##
|
14 |
|
15 |
-
-
|
16 |
-
-
|
17 |
-
-
|
18 |
-
-
|
19 |
|
20 |
## Setup and Installation
|
21 |
|
@@ -35,11 +42,55 @@ pip install -r requirements.txt
|
|
35 |
streamlit run amazon_app.py
|
36 |
```
|
37 |
|
38 |
-
##
|
39 |
|
40 |
-
|
41 |
-
-
|
42 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
## Future Directions
|
45 |
|
|
|
1 |
+
---
|
2 |
+
title: Amazon E-commerce Visual Assistant
|
3 |
+
emoji: 🛍️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: "1.28.0"
|
8 |
+
app_file: amazon_app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
# Amazon E-commerce Visual Assistant
|
13 |
|
14 |
+
A multimodal AI assistant leveraging the Amazon Product Dataset 2020 to provide comprehensive product search and recommendations through natural language and image-based interactions[1].
|
15 |
|
16 |
+
## Project Overview
|
17 |
|
18 |
+
This conversational AI system combines advanced language and vision models to enhance e-commerce customer support, enabling accurate, context-aware responses to product-related queries[1].
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
## Project Structure
|
21 |
|
22 |
+
- `amazon_app.py`: Main Streamlit application
|
23 |
+
- `model.py`: Core AI model implementations
|
24 |
+
- `Vision_AI.ipynb`: EDA, Embedding Model, LLM
|
25 |
+
- `requirements.txt`: Project dependencies
|
26 |
|
27 |
## Setup and Installation
|
28 |
|
|
|
42 |
streamlit run amazon_app.py
|
43 |
```
|
44 |
|
45 |
+
## Technical Architecture
|
46 |
|
47 |
+
### Data Processing & Storage
|
48 |
+
- Standardized text fields and normalized numeric attributes
|
49 |
+
- Enhanced metadata indices for categories, price ranges, keywords, brands
|
50 |
+
- Validated image quality and managed duplicates
|
51 |
+
- Structured data storage in Parquet format[1]
|
52 |
+
|
53 |
+
### Model Components
|
54 |
+
- **Vision-Language Integration**: FashionCLIP for multimodal embedding generation
|
55 |
+
- **Vector Search**: FAISS with hybrid retrieval combining embedding similarity and metadata filtering
|
56 |
+
- **Language Model**: Mistral-7B with 4-bit quantization
|
57 |
+
- **RAG Framework**: Context-enhanced response generation[1]
|
58 |
+
|
59 |
+
### Performance Metrics
|
60 |
+
- Recall@1: 0.6385
|
61 |
+
- Recall@10: 0.9008
|
62 |
+
- Precision@1: 0.6385
|
63 |
+
- NDCG@10: 0.7725[1]
|
64 |
+
|
65 |
+
## Implementation Details
|
66 |
+
|
67 |
+
### Core Features
|
68 |
+
- Text and image-based product search
|
69 |
+
- Product comparisons and recommendations
|
70 |
+
- Visual product recognition
|
71 |
+
- Detailed product information retrieval
|
72 |
+
- Price analysis and comparison[1]
|
73 |
+
|
74 |
+
### Technologies Used
|
75 |
+
- FashionCLIP for visual understanding
|
76 |
+
- Mistral-7B Language Model (4-bit quantized)
|
77 |
+
- FAISS for similarity search
|
78 |
+
- Google Vertex AI for vector storage
|
79 |
+
- Streamlit for user interface[1]
|
80 |
+
|
81 |
+
## Challenges & Solutions
|
82 |
+
|
83 |
+
### Technical Challenges Addressed
|
84 |
+
- Image processing with varying quality
|
85 |
+
- GPU memory optimization
|
86 |
+
- Efficient embedding storage
|
87 |
+
- Query response accuracy[1]
|
88 |
+
|
89 |
+
### Implemented Solutions
|
90 |
+
- Robust image validation pipeline
|
91 |
+
- 4-bit model quantization
|
92 |
+
- Optimized batch processing
|
93 |
+
- Enhanced metadata enrichment[1]
|
94 |
|
95 |
## Future Directions
|
96 |
|
README.md
CHANGED
@@ -11,22 +11,18 @@ pinned: false
|
|
11 |
|
12 |
# Amazon E-commerce Visual Assistant
|
13 |
|
14 |
-
A multimodal AI assistant
|
15 |
|
16 |
-
##
|
17 |
|
18 |
-
|
19 |
-
- Product comparisons and recommendations
|
20 |
-
- Visual product recognition
|
21 |
-
- Detailed product information retrieval
|
22 |
-
- Price analysis and comparison
|
23 |
|
24 |
-
##
|
25 |
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
29 |
-
-
|
30 |
|
31 |
## Setup and Installation
|
32 |
|
@@ -46,14 +42,58 @@ pip install -r requirements.txt
|
|
46 |
streamlit run amazon_app.py
|
47 |
```
|
48 |
|
49 |
-
##
|
50 |
|
51 |
-
|
52 |
-
-
|
53 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
## Future Directions
|
56 |
|
57 |
- [ ] Fine-Tune FashionClip embedding model based on the specific domain data
|
58 |
- [ ] Fine-Tune large language model to improve its generalization capabilities
|
59 |
-
- [ ] Develop feedback loops for continuous improvement
|
|
|
11 |
|
12 |
# Amazon E-commerce Visual Assistant
|
13 |
|
14 |
+
A multimodal AI assistant leveraging the Amazon Product Dataset 2020 to provide comprehensive product search and recommendations through natural language and image-based interactions[1].
|
15 |
|
16 |
+
## Project Overview
|
17 |
|
18 |
+
This conversational AI system combines advanced language and vision models to enhance e-commerce customer support, enabling accurate, context-aware responses to product-related queries[1].
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
## Project Structure
|
21 |
|
22 |
+
- `amazon_app.py`: Main Streamlit application
|
23 |
+
- `model.py`: Core AI model implementations
|
24 |
+
- `Vision_AI.ipynb`: EDA, Embedding Model, LLM
|
25 |
+
- `requirements.txt`: Project dependencies
|
26 |
|
27 |
## Setup and Installation
|
28 |
|
|
|
42 |
streamlit run amazon_app.py
|
43 |
```
|
44 |
|
45 |
+
## Technical Architecture
|
46 |
|
47 |
+
### Data Processing & Storage
|
48 |
+
- Standardized text fields and normalized numeric attributes
|
49 |
+
- Enhanced metadata indices for categories, price ranges, keywords, brands
|
50 |
+
- Validated image quality and managed duplicates
|
51 |
+
- Structured data storage in Parquet format[1]
|
52 |
+
|
53 |
+
### Model Components
|
54 |
+
- **Vision-Language Integration**: FashionCLIP for multimodal embedding generation
|
55 |
+
- **Vector Search**: FAISS with hybrid retrieval combining embedding similarity and metadata filtering
|
56 |
+
- **Language Model**: Mistral-7B with 4-bit quantization
|
57 |
+
- **RAG Framework**: Context-enhanced response generation[1]
|
58 |
+
|
59 |
+
### Performance Metrics
|
60 |
+
- Recall@1: 0.6385
|
61 |
+
- Recall@10: 0.9008
|
62 |
+
- Precision@1: 0.6385
|
63 |
+
- NDCG@10: 0.7725[1]
|
64 |
+
|
65 |
+
## Implementation Details
|
66 |
+
|
67 |
+
### Core Features
|
68 |
+
- Text and image-based product search
|
69 |
+
- Product comparisons and recommendations
|
70 |
+
- Visual product recognition
|
71 |
+
- Detailed product information retrieval
|
72 |
+
- Price analysis and comparison[1]
|
73 |
+
|
74 |
+
### Technologies Used
|
75 |
+
- FashionCLIP for visual understanding
|
76 |
+
- Mistral-7B Language Model (4-bit quantized)
|
77 |
+
- FAISS for similarity search
|
78 |
+
- Google Vertex AI for vector storage
|
79 |
+
- Streamlit for user interface[1]
|
80 |
+
|
81 |
+
## Challenges & Solutions
|
82 |
+
|
83 |
+
### Technical Challenges Addressed
|
84 |
+
- Image processing with varying quality
|
85 |
+
- GPU memory optimization
|
86 |
+
- Efficient embedding storage
|
87 |
+
- Query response accuracy[1]
|
88 |
+
|
89 |
+
### Implemented Solutions
|
90 |
+
- Robust image validation pipeline
|
91 |
+
- 4-bit model quantization
|
92 |
+
- Optimized batch processing
|
93 |
+
- Enhanced metadata enrichment[1]
|
94 |
|
95 |
## Future Directions
|
96 |
|
97 |
- [ ] Fine-Tune FashionClip embedding model based on the specific domain data
|
98 |
- [ ] Fine-Tune large language model to improve its generalization capabilities
|
99 |
+
- [ ] Develop feedback loops for continuous improvement
|