Spaces:
Build error
Build error
Wisdom Chen
commited on
Update model.py
Browse files
model.py
CHANGED
@@ -53,12 +53,18 @@ def initialize_models() -> bool:
|
|
53 |
try:
|
54 |
print(f"Initializing models on device: {device}")
|
55 |
|
56 |
-
# Add explicit Hugging Face login
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# Initialize CLIP model with error handling
|
64 |
try:
|
@@ -85,20 +91,18 @@ def initialize_models() -> bool:
|
|
85 |
# Initialize tokenizer with specific version requirements
|
86 |
llm_tokenizer = AutoTokenizer.from_pretrained(
|
87 |
model_name,
|
88 |
-
|
89 |
-
trust_remote_code=True
|
90 |
-
use_auth_token=True # Add this line
|
91 |
)
|
92 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
93 |
|
94 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
95 |
model_name,
|
96 |
-
|
97 |
quantization_config=quantization_config,
|
98 |
device_map="auto",
|
99 |
torch_dtype=torch.float16,
|
100 |
-
trust_remote_code=True
|
101 |
-
use_auth_token=True # Add this line
|
102 |
)
|
103 |
llm_model.eval()
|
104 |
print("LLM initialized successfully")
|
@@ -110,6 +114,7 @@ def initialize_models() -> bool:
|
|
110 |
except Exception as e:
|
111 |
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
112 |
|
|
|
113 |
# Data loading
|
114 |
def load_data() -> bool:
|
115 |
"""
|
|
|
53 |
try:
|
54 |
print(f"Initializing models on device: {device}")
|
55 |
|
56 |
+
# Add explicit Hugging Face login with better error handling
|
57 |
+
try:
|
58 |
+
hf_token = st.secrets.HUGGINGFACE_TOKEN
|
59 |
+
if not isinstance(hf_token, str) or not hf_token.startswith('hf_'):
|
60 |
+
raise ValueError("Invalid Hugging Face token format")
|
61 |
+
|
62 |
+
# Validate token before proceeding
|
63 |
+
login(token=hf_token, write_permission=False)
|
64 |
+
print("Successfully authenticated with Hugging Face")
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
raise RuntimeError(f"Hugging Face authentication failed: {str(e)}")
|
68 |
|
69 |
# Initialize CLIP model with error handling
|
70 |
try:
|
|
|
91 |
# Initialize tokenizer with specific version requirements
|
92 |
llm_tokenizer = AutoTokenizer.from_pretrained(
|
93 |
model_name,
|
94 |
+
use_auth_token=hf_token,
|
95 |
+
trust_remote_code=True
|
|
|
96 |
)
|
97 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
98 |
|
99 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
100 |
model_name,
|
101 |
+
use_auth_token=hf_token,
|
102 |
quantization_config=quantization_config,
|
103 |
device_map="auto",
|
104 |
torch_dtype=torch.float16,
|
105 |
+
trust_remote_code=True
|
|
|
106 |
)
|
107 |
llm_model.eval()
|
108 |
print("LLM initialized successfully")
|
|
|
114 |
except Exception as e:
|
115 |
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
116 |
|
117 |
+
|
118 |
# Data loading
|
119 |
def load_data() -> bool:
|
120 |
"""
|