Spaces:
Build error
Build error
wisdom196473
commited on
Commit
·
1fd9ec2
0
Parent(s):
Initial commit
Browse files- .gitignore +7 -0
- .ipynb_checkpoints/README-checkpoint.md +46 -0
- .ipynb_checkpoints/Vision_AI-checkpoint.ipynb +0 -0
- .ipynb_checkpoints/model-checkpoint.py +762 -0
- README.md +46 -0
- Vision_AI.ipynb +0 -0
- amazon_app.py +269 -0
- clip_embedding_evaluation_results/evaluation_metrics.csv +2 -0
- model.py +762 -0
- requirements.txt +14 -0
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.pyc
|
| 3 |
+
.env
|
| 4 |
+
.venv/
|
| 5 |
+
venv/
|
| 6 |
+
.idea/
|
| 7 |
+
.vscode/
|
.ipynb_checkpoints/README-checkpoint.md
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Amazon E-commerce Visual Assistant
|
| 2 |
+
|
| 3 |
+
A multimodal AI assistant that helps users search and explore Amazon products through natural language and image-based interactions.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- Text and image-based product search
|
| 8 |
+
- Product comparisons and recommendations
|
| 9 |
+
- Visual product recognition
|
| 10 |
+
- Detailed product information retrieval
|
| 11 |
+
- Price analysis and comparison
|
| 12 |
+
|
| 13 |
+
## Technologies Used
|
| 14 |
+
|
| 15 |
+
- FashionCLIP for visual understanding
|
| 16 |
+
- Mistral-7B Language Model for text generation
|
| 17 |
+
- FAISS for efficient similarity search
|
| 18 |
+
- Streamlit for the user interface
|
| 19 |
+
|
| 20 |
+
## Setup and Installation
|
| 21 |
+
|
| 22 |
+
1. Clone the repository:
|
| 23 |
+
```bash
|
| 24 |
+
git clone https://github.com/wisdom196473/amazon-multimodal-product-assistant.git
|
| 25 |
+
cd amazon-multimodal-product-assistant
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
2. Install dependencies:
|
| 29 |
+
```bash
|
| 30 |
+
pip install -r requirements.txt
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
3. Run the application:
|
| 34 |
+
```bash
|
| 35 |
+
streamlit run amazon_app.py
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## Project Structure
|
| 39 |
+
|
| 40 |
+
- `amazon_app.py`: Main Streamlit application
|
| 41 |
+
- `model.py`: Core AI model implementations
|
| 42 |
+
- `requirements.txt`: Project dependencies
|
| 43 |
+
|
| 44 |
+
## License
|
| 45 |
+
|
| 46 |
+
MIT License
|
.ipynb_checkpoints/Vision_AI-checkpoint.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
.ipynb_checkpoints/model-checkpoint.py
ADDED
|
@@ -0,0 +1,762 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Standard libraries
|
| 2 |
+
import os
|
| 3 |
+
import io
|
| 4 |
+
import json
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from typing import Dict, List, Tuple, Optional
|
| 8 |
+
import requests
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
|
| 13 |
+
# Deep learning frameworks
|
| 14 |
+
import torch
|
| 15 |
+
from torch.cuda.amp import autocast
|
| 16 |
+
import open_clip
|
| 17 |
+
|
| 18 |
+
# Hugging Face
|
| 19 |
+
from transformers import (
|
| 20 |
+
AutoTokenizer,
|
| 21 |
+
AutoModelForCausalLM,
|
| 22 |
+
BitsAndBytesConfig,
|
| 23 |
+
pipeline,
|
| 24 |
+
PreTrainedModel,
|
| 25 |
+
PreTrainedTokenizer
|
| 26 |
+
)
|
| 27 |
+
from huggingface_hub import hf_hub_download
|
| 28 |
+
from langchain.prompts import PromptTemplate
|
| 29 |
+
|
| 30 |
+
# Vector database
|
| 31 |
+
import faiss
|
| 32 |
+
|
| 33 |
+
# Type hints
|
| 34 |
+
from typing import Dict, List, Tuple, Optional, Union
|
| 35 |
+
|
| 36 |
+
# Global variables
|
| 37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 38 |
+
clip_model: Optional[PreTrainedModel] = None
|
| 39 |
+
clip_preprocess: Optional[callable] = None
|
| 40 |
+
clip_tokenizer: Optional[PreTrainedTokenizer] = None
|
| 41 |
+
llm_tokenizer: Optional[PreTrainedTokenizer] = None
|
| 42 |
+
llm_model: Optional[PreTrainedModel] = None
|
| 43 |
+
product_df: Optional[pd.DataFrame] = None
|
| 44 |
+
metadata: Dict = {}
|
| 45 |
+
embeddings_df: Optional[pd.DataFrame] = None
|
| 46 |
+
text_faiss: Optional[object] = None
|
| 47 |
+
image_faiss: Optional[object] = None
|
| 48 |
+
|
| 49 |
+
def initialize_models() -> bool:
|
| 50 |
+
"""
|
| 51 |
+
Initialize CLIP and LLM models with proper error handling and GPU optimization.
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
bool: True if initialization successful, raises RuntimeError otherwise
|
| 55 |
+
"""
|
| 56 |
+
global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
print(f"Initializing models on device: {device}")
|
| 60 |
+
|
| 61 |
+
# Initialize CLIP model with error handling
|
| 62 |
+
try:
|
| 63 |
+
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
|
| 64 |
+
'hf-hub:Marqo/marqo-fashionCLIP'
|
| 65 |
+
)
|
| 66 |
+
clip_model = clip_model.to(device)
|
| 67 |
+
clip_model.eval()
|
| 68 |
+
clip_tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
|
| 69 |
+
print("CLIP model initialized successfully")
|
| 70 |
+
except Exception as e:
|
| 71 |
+
raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
| 72 |
+
|
| 73 |
+
# Initialize LLM with optimized settings
|
| 74 |
+
try:
|
| 75 |
+
model_name = "mistralai/Mistral-7B-v0.1"
|
| 76 |
+
quantization_config = BitsAndBytesConfig(
|
| 77 |
+
load_in_4bit=True,
|
| 78 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 79 |
+
bnb_4bit_use_double_quant=True,
|
| 80 |
+
bnb_4bit_quant_type="nf4"
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(
|
| 84 |
+
model_name,
|
| 85 |
+
padding_side="left",
|
| 86 |
+
truncation_side="left"
|
| 87 |
+
)
|
| 88 |
+
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 89 |
+
|
| 90 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 91 |
+
model_name,
|
| 92 |
+
quantization_config=quantization_config,
|
| 93 |
+
device_map="auto",
|
| 94 |
+
torch_dtype=torch.float16
|
| 95 |
+
)
|
| 96 |
+
llm_model.eval()
|
| 97 |
+
print("LLM initialized successfully")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
raise RuntimeError(f"Failed to initialize LLM: {str(e)}")
|
| 100 |
+
|
| 101 |
+
return True
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
| 105 |
+
|
| 106 |
+
# Data loading
|
| 107 |
+
def load_data() -> bool:
|
| 108 |
+
"""
|
| 109 |
+
Load and initialize all required data with enhanced metadata support and error handling.
|
| 110 |
+
|
| 111 |
+
Returns:
|
| 112 |
+
bool: True if data loading successful, raises RuntimeError otherwise
|
| 113 |
+
"""
|
| 114 |
+
global product_df, metadata, embeddings_df, text_faiss, image_faiss
|
| 115 |
+
|
| 116 |
+
try:
|
| 117 |
+
print("Loading product data...")
|
| 118 |
+
# Load cleaned product data
|
| 119 |
+
try:
|
| 120 |
+
cleaned_data_path = hf_hub_download(
|
| 121 |
+
repo_id="chen196473/amazon_product_2020_cleaned",
|
| 122 |
+
filename="amazon_cleaned.parquet",
|
| 123 |
+
repo_type="dataset"
|
| 124 |
+
)
|
| 125 |
+
product_df = pd.read_parquet(cleaned_data_path)
|
| 126 |
+
|
| 127 |
+
# Add validation columns
|
| 128 |
+
product_df['Has_Valid_Image'] = product_df['Processed Image'].notna()
|
| 129 |
+
product_df['Image_Status'] = product_df['Has_Valid_Image'].map({
|
| 130 |
+
True: 'valid',
|
| 131 |
+
False: 'invalid'
|
| 132 |
+
})
|
| 133 |
+
print("Product data loaded successfully")
|
| 134 |
+
except Exception as e:
|
| 135 |
+
raise RuntimeError(f"Failed to load product data: {str(e)}")
|
| 136 |
+
|
| 137 |
+
# Load enhanced metadata
|
| 138 |
+
print("Loading metadata...")
|
| 139 |
+
try:
|
| 140 |
+
metadata = {}
|
| 141 |
+
metadata_files = [
|
| 142 |
+
'base_metadata.json',
|
| 143 |
+
'category_index.json',
|
| 144 |
+
'price_range_index.json',
|
| 145 |
+
'keyword_index.json',
|
| 146 |
+
'brand_index.json',
|
| 147 |
+
'product_name_index.json'
|
| 148 |
+
]
|
| 149 |
+
|
| 150 |
+
for file in metadata_files:
|
| 151 |
+
file_path = hf_hub_download(
|
| 152 |
+
repo_id="chen196473/amazon_product_2020_metadata",
|
| 153 |
+
filename=file,
|
| 154 |
+
repo_type="dataset"
|
| 155 |
+
)
|
| 156 |
+
with open(file_path, 'r') as f:
|
| 157 |
+
index_name = file.replace('.json', '')
|
| 158 |
+
data = json.load(f)
|
| 159 |
+
|
| 160 |
+
if index_name == 'base_metadata':
|
| 161 |
+
data = {item['Uniq_Id']: item for item in data}
|
| 162 |
+
for item in data.values():
|
| 163 |
+
if 'Keywords' in item:
|
| 164 |
+
item['Keywords'] = set(item['Keywords'])
|
| 165 |
+
|
| 166 |
+
metadata[index_name] = data
|
| 167 |
+
print("Metadata loaded successfully")
|
| 168 |
+
except Exception as e:
|
| 169 |
+
raise RuntimeError(f"Failed to load metadata: {str(e)}")
|
| 170 |
+
|
| 171 |
+
# Load embeddings
|
| 172 |
+
print("Loading embeddings...")
|
| 173 |
+
try:
|
| 174 |
+
text_embeddings_dict, image_embeddings_dict = load_embeddings_from_huggingface(
|
| 175 |
+
"chen196473/amazon_vector_database"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Create embeddings DataFrame
|
| 179 |
+
embeddings_df = pd.DataFrame({
|
| 180 |
+
'text_embeddings': list(text_embeddings_dict.values()),
|
| 181 |
+
'image_embeddings': list(image_embeddings_dict.values()),
|
| 182 |
+
'Uniq_Id': list(text_embeddings_dict.keys())
|
| 183 |
+
})
|
| 184 |
+
|
| 185 |
+
# Merge with product data
|
| 186 |
+
product_df = product_df.merge(
|
| 187 |
+
embeddings_df,
|
| 188 |
+
left_on='Uniq Id',
|
| 189 |
+
right_on='Uniq_Id',
|
| 190 |
+
how='inner'
|
| 191 |
+
)
|
| 192 |
+
print("Embeddings loaded and merged successfully")
|
| 193 |
+
|
| 194 |
+
# Create FAISS indexes
|
| 195 |
+
print("Creating FAISS indexes...")
|
| 196 |
+
try:
|
| 197 |
+
create_faiss_indexes(text_embeddings_dict, image_embeddings_dict)
|
| 198 |
+
print("FAISS indexes created successfully")
|
| 199 |
+
|
| 200 |
+
# Verify FAISS indexes are properly initialized and contain data
|
| 201 |
+
if text_faiss is None or image_faiss is None:
|
| 202 |
+
raise RuntimeError("FAISS indexes were not properly initialized")
|
| 203 |
+
|
| 204 |
+
# Test a simple query to verify indexes are working
|
| 205 |
+
test_query = "test"
|
| 206 |
+
tokens = clip_tokenizer(test_query).to(device)
|
| 207 |
+
with torch.no_grad():
|
| 208 |
+
text_embedding = clip_model.encode_text(tokens)
|
| 209 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
| 210 |
+
text_embedding = text_embedding.cpu().numpy()
|
| 211 |
+
|
| 212 |
+
# Verify search works
|
| 213 |
+
test_results = text_faiss.search(text_embedding[0], k=1)
|
| 214 |
+
if not test_results:
|
| 215 |
+
raise RuntimeError("FAISS indexes are empty")
|
| 216 |
+
|
| 217 |
+
print("FAISS indexes verified successfully")
|
| 218 |
+
|
| 219 |
+
except Exception as e:
|
| 220 |
+
raise RuntimeError(f"Failed to create or verify FAISS indexes: {str(e)}")
|
| 221 |
+
|
| 222 |
+
except Exception as e:
|
| 223 |
+
raise RuntimeError(f"Failed to load embeddings: {str(e)}")
|
| 224 |
+
|
| 225 |
+
# Validate required columns
|
| 226 |
+
required_columns = [
|
| 227 |
+
'Uniq Id', 'Product Name', 'Category', 'Selling Price',
|
| 228 |
+
'Model Number', 'Image', 'Normalized Description'
|
| 229 |
+
]
|
| 230 |
+
missing_cols = set(required_columns) - set(product_df.columns)
|
| 231 |
+
if missing_cols:
|
| 232 |
+
raise ValueError(f"Missing required columns: {missing_cols}")
|
| 233 |
+
|
| 234 |
+
# Add enhanced metadata fields
|
| 235 |
+
if 'Search_Text' not in product_df.columns:
|
| 236 |
+
product_df['Search_Text'] = product_df.apply(
|
| 237 |
+
lambda x: metadata['base_metadata'].get(x['Uniq Id'], {}).get('Search_Text', ''),
|
| 238 |
+
axis=1
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# Final verification of loaded data
|
| 242 |
+
if product_df is None or product_df.empty:
|
| 243 |
+
raise RuntimeError("Product DataFrame is empty or not initialized")
|
| 244 |
+
|
| 245 |
+
if not metadata:
|
| 246 |
+
raise RuntimeError("Metadata dictionary is empty")
|
| 247 |
+
|
| 248 |
+
if embeddings_df is None or embeddings_df.empty:
|
| 249 |
+
raise RuntimeError("Embeddings DataFrame is empty or not initialized")
|
| 250 |
+
|
| 251 |
+
print("Data loading completed successfully")
|
| 252 |
+
return True
|
| 253 |
+
|
| 254 |
+
except Exception as e:
|
| 255 |
+
# Clean up any partially loaded data
|
| 256 |
+
product_df = None
|
| 257 |
+
metadata = {}
|
| 258 |
+
embeddings_df = None
|
| 259 |
+
text_faiss = None
|
| 260 |
+
image_faiss = None
|
| 261 |
+
raise RuntimeError(f"Data loading failed: {str(e)}")
|
| 262 |
+
|
| 263 |
+
def load_embeddings_from_huggingface(repo_id: str) -> Tuple[Dict, Dict]:
|
| 264 |
+
"""
|
| 265 |
+
Load embeddings from Hugging Face repository with enhanced error handling.
|
| 266 |
+
|
| 267 |
+
Args:
|
| 268 |
+
repo_id (str): Hugging Face repository ID
|
| 269 |
+
|
| 270 |
+
Returns:
|
| 271 |
+
Tuple[Dict, Dict]: Dictionaries containing text and image embeddings
|
| 272 |
+
"""
|
| 273 |
+
print("Loading embeddings from Hugging Face...")
|
| 274 |
+
try:
|
| 275 |
+
file_path = hf_hub_download(
|
| 276 |
+
repo_id=repo_id,
|
| 277 |
+
filename="embeddings.parquet",
|
| 278 |
+
repo_type="dataset"
|
| 279 |
+
)
|
| 280 |
+
df = pd.read_parquet(file_path)
|
| 281 |
+
|
| 282 |
+
# Extract embedding columns
|
| 283 |
+
text_cols = [col for col in df.columns if col.startswith('text_embedding_')]
|
| 284 |
+
image_cols = [col for col in df.columns if col.startswith('image_embedding_')]
|
| 285 |
+
|
| 286 |
+
# Create embedding dictionaries
|
| 287 |
+
text_embeddings_dict = {
|
| 288 |
+
row['Uniq_Id']: row[text_cols].values.astype(np.float32)
|
| 289 |
+
for _, row in df.iterrows()
|
| 290 |
+
}
|
| 291 |
+
image_embeddings_dict = {
|
| 292 |
+
row['Uniq_Id']: row[image_cols].values.astype(np.float32)
|
| 293 |
+
for _, row in df.iterrows()
|
| 294 |
+
}
|
| 295 |
+
|
| 296 |
+
print(f"Successfully loaded {len(text_embeddings_dict)} embeddings")
|
| 297 |
+
return text_embeddings_dict, image_embeddings_dict
|
| 298 |
+
|
| 299 |
+
except Exception as e:
|
| 300 |
+
raise RuntimeError(f"Failed to load embeddings from Hugging Face: {str(e)}")
|
| 301 |
+
|
| 302 |
+
# FAISS index creation
|
| 303 |
+
class MultiModalFAISSIndex:
|
| 304 |
+
def __init__(self, dimension, index_type='L2'):
|
| 305 |
+
import faiss
|
| 306 |
+
self.dimension = dimension
|
| 307 |
+
self.index = faiss.IndexFlatL2(dimension) if index_type == 'L2' else faiss.IndexFlatIP(dimension)
|
| 308 |
+
self.id_to_metadata = {}
|
| 309 |
+
|
| 310 |
+
def add_embeddings(self, embeddings, metadata_list):
|
| 311 |
+
import numpy as np
|
| 312 |
+
embeddings = np.array(embeddings).astype('float32')
|
| 313 |
+
self.index.add(embeddings)
|
| 314 |
+
for i, metadata in enumerate(metadata_list):
|
| 315 |
+
self.id_to_metadata[i] = metadata
|
| 316 |
+
|
| 317 |
+
def search(self, query_embedding, k=5):
|
| 318 |
+
import numpy as np
|
| 319 |
+
query_embedding = np.array([query_embedding]).astype('float32')
|
| 320 |
+
distances, indices = self.index.search(query_embedding, k)
|
| 321 |
+
results = []
|
| 322 |
+
for idx in indices[0]:
|
| 323 |
+
if idx in self.id_to_metadata:
|
| 324 |
+
results.append(self.id_to_metadata[idx])
|
| 325 |
+
return results
|
| 326 |
+
|
| 327 |
+
def create_faiss_indexes(text_embeddings_dict, image_embeddings_dict):
|
| 328 |
+
"""Create FAISS indexes with error handling"""
|
| 329 |
+
global text_faiss, image_faiss
|
| 330 |
+
|
| 331 |
+
try:
|
| 332 |
+
# Get embedding dimension
|
| 333 |
+
text_dim = next(iter(text_embeddings_dict.values())).shape[0]
|
| 334 |
+
image_dim = next(iter(image_embeddings_dict.values())).shape[0]
|
| 335 |
+
|
| 336 |
+
# Create indexes
|
| 337 |
+
text_faiss = MultiModalFAISSIndex(text_dim)
|
| 338 |
+
image_faiss = MultiModalFAISSIndex(image_dim)
|
| 339 |
+
|
| 340 |
+
# Prepare text embeddings and metadata
|
| 341 |
+
text_embeddings = []
|
| 342 |
+
text_metadata = []
|
| 343 |
+
for text_id, embedding in text_embeddings_dict.items():
|
| 344 |
+
if text_id in product_df['Uniq Id'].values:
|
| 345 |
+
product = product_df[product_df['Uniq Id'] == text_id].iloc[0]
|
| 346 |
+
text_embeddings.append(embedding)
|
| 347 |
+
text_metadata.append({
|
| 348 |
+
'id': text_id,
|
| 349 |
+
'description': product['Normalized Description'],
|
| 350 |
+
'product_name': product['Product Name']
|
| 351 |
+
})
|
| 352 |
+
|
| 353 |
+
# Add text embeddings
|
| 354 |
+
if text_embeddings:
|
| 355 |
+
text_faiss.add_embeddings(text_embeddings, text_metadata)
|
| 356 |
+
|
| 357 |
+
# Prepare image embeddings and metadata
|
| 358 |
+
image_embeddings = []
|
| 359 |
+
image_metadata = []
|
| 360 |
+
for image_id, embedding in image_embeddings_dict.items():
|
| 361 |
+
if image_id in product_df['Uniq Id'].values:
|
| 362 |
+
product = product_df[product_df['Uniq Id'] == image_id].iloc[0]
|
| 363 |
+
image_embeddings.append(embedding)
|
| 364 |
+
image_metadata.append({
|
| 365 |
+
'id': image_id,
|
| 366 |
+
'image_url': product['Image'],
|
| 367 |
+
'product_name': product['Product Name']
|
| 368 |
+
})
|
| 369 |
+
|
| 370 |
+
# Add image embeddings
|
| 371 |
+
if image_embeddings:
|
| 372 |
+
image_faiss.add_embeddings(image_embeddings, image_metadata)
|
| 373 |
+
|
| 374 |
+
return True
|
| 375 |
+
|
| 376 |
+
except Exception as e:
|
| 377 |
+
raise RuntimeError(f"Failed to create FAISS indexes: {str(e)}")
|
| 378 |
+
|
| 379 |
+
def get_few_shot_product_comparison_template():
|
| 380 |
+
return """Compare these specific products based on their actual features and specifications:
|
| 381 |
+
|
| 382 |
+
Example 1:
|
| 383 |
+
Question: Compare iPhone 13 and Samsung Galaxy S21
|
| 384 |
+
Answer: The iPhone 13 features a 6.1-inch Super Retina XDR display and dual 12MP cameras, while the Galaxy S21 has a 6.2-inch Dynamic AMOLED display and triple camera setup. Both phones offer 5G connectivity, but the iPhone uses A15 Bionic chip while S21 uses Snapdragon 888.
|
| 385 |
+
|
| 386 |
+
Example 2:
|
| 387 |
+
Question: Compare Amazon Echo Dot and Google Nest Mini
|
| 388 |
+
Answer: The Amazon Echo Dot features Alexa voice assistant and a 1.6-inch speaker, while the Google Nest Mini comes with Google Assistant and a 40mm driver. Both devices offer smart home control and music playback, but differ in their ecosystem integration.
|
| 389 |
+
|
| 390 |
+
Current Question: {query}
|
| 391 |
+
Context: {context}
|
| 392 |
+
|
| 393 |
+
Guidelines:
|
| 394 |
+
- Only compare the specific products mentioned in the query
|
| 395 |
+
- Focus on actual product features and specifications
|
| 396 |
+
- Keep response to 2-3 clear sentences
|
| 397 |
+
- Ensure factual accuracy based on the context provided
|
| 398 |
+
|
| 399 |
+
Answer:"""
|
| 400 |
+
|
| 401 |
+
def get_zero_shot_product_template():
|
| 402 |
+
return """You are a product information specialist. Describe only the specific product's actual features based on the provided context.
|
| 403 |
+
|
| 404 |
+
Context: {context}
|
| 405 |
+
|
| 406 |
+
Question: {query}
|
| 407 |
+
|
| 408 |
+
Guidelines:
|
| 409 |
+
- Only describe the specific product mentioned in the query
|
| 410 |
+
- Focus on actual features and specifications from the context
|
| 411 |
+
- Keep response to 2-3 factual sentences
|
| 412 |
+
- Ensure information accuracy
|
| 413 |
+
|
| 414 |
+
Answer:"""
|
| 415 |
+
|
| 416 |
+
def get_zero_shot_image_template():
|
| 417 |
+
return """Analyze this product image and provide a concise description:
|
| 418 |
+
|
| 419 |
+
Product Information:
|
| 420 |
+
{context}
|
| 421 |
+
|
| 422 |
+
Guidelines:
|
| 423 |
+
- Describe the main product features and intended use
|
| 424 |
+
- Highlight key specifications and materials
|
| 425 |
+
- Keep response to 2-3 sentences
|
| 426 |
+
- Focus on practical information
|
| 427 |
+
|
| 428 |
+
Answer:"""
|
| 429 |
+
|
| 430 |
+
# Image processing functions
|
| 431 |
+
def process_image(image):
|
| 432 |
+
try:
|
| 433 |
+
if isinstance(image, str):
|
| 434 |
+
response = requests.get(image)
|
| 435 |
+
image = Image.open(io.BytesIO(response.content))
|
| 436 |
+
|
| 437 |
+
processed_image = clip_preprocess(image).unsqueeze(0).to(device)
|
| 438 |
+
|
| 439 |
+
with torch.no_grad():
|
| 440 |
+
image_features = clip_model.encode_image(processed_image)
|
| 441 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
| 442 |
+
|
| 443 |
+
return image_features.cpu().numpy()
|
| 444 |
+
except Exception as e:
|
| 445 |
+
raise Exception(f"Error processing image: {str(e)}")
|
| 446 |
+
|
| 447 |
+
def load_image_from_url(url):
|
| 448 |
+
response = requests.get(url)
|
| 449 |
+
if response.status_code == 200:
|
| 450 |
+
return Image.open(io.BytesIO(response.content))
|
| 451 |
+
else:
|
| 452 |
+
raise Exception(f"Failed to fetch image from URL: {url}, Status Code: {response.status_code}")
|
| 453 |
+
|
| 454 |
+
# Context retrieval and enhancement
|
| 455 |
+
def filter_by_metadata(query, metadata_index):
|
| 456 |
+
relevant_products = set()
|
| 457 |
+
|
| 458 |
+
# Check category index
|
| 459 |
+
if 'category_index' in metadata_index:
|
| 460 |
+
categories = metadata_index['category_index']
|
| 461 |
+
for category in categories:
|
| 462 |
+
if any(term.lower() in category.lower() for term in query.split()):
|
| 463 |
+
relevant_products.update(categories[category])
|
| 464 |
+
|
| 465 |
+
# Check product name index
|
| 466 |
+
if 'product_name_index' in metadata_index:
|
| 467 |
+
product_names = metadata_index['product_name_index']
|
| 468 |
+
for term in query.split():
|
| 469 |
+
if term.lower() in product_names:
|
| 470 |
+
relevant_products.update(product_names[term.lower()])
|
| 471 |
+
|
| 472 |
+
# Check price ranges
|
| 473 |
+
price_terms = {'cheap', 'expensive', 'price', 'cost', 'affordable'}
|
| 474 |
+
if any(term in query.lower() for term in price_terms) and 'price_range_index' in metadata_index:
|
| 475 |
+
price_ranges = metadata_index['price_range_index']
|
| 476 |
+
for price_range in price_ranges:
|
| 477 |
+
relevant_products.update(price_ranges[price_range])
|
| 478 |
+
|
| 479 |
+
return relevant_products if relevant_products else None
|
| 480 |
+
|
| 481 |
+
def enhance_context_with_metadata(product, metadata_index):
|
| 482 |
+
"""Enhanced context building using new metadata structure"""
|
| 483 |
+
# Access base_metadata using product ID directly since it's now a dictionary
|
| 484 |
+
base_metadata = metadata_index['base_metadata'].get(product['Uniq Id'])
|
| 485 |
+
|
| 486 |
+
if base_metadata:
|
| 487 |
+
# Get keywords and search text from enhanced metadata
|
| 488 |
+
keywords = base_metadata.get('Keywords', [])
|
| 489 |
+
search_text = base_metadata.get('Search_Text', '')
|
| 490 |
+
|
| 491 |
+
# Build enhanced description
|
| 492 |
+
description = []
|
| 493 |
+
description.append(f"Product Name: {base_metadata['Product_Name']}")
|
| 494 |
+
description.append(f"Category: {base_metadata['Category']}")
|
| 495 |
+
description.append(f"Price: ${base_metadata['Selling_Price']:.2f}")
|
| 496 |
+
|
| 497 |
+
# Add key features from normalized description
|
| 498 |
+
if 'Normalized_Description' in base_metadata:
|
| 499 |
+
features = []
|
| 500 |
+
for feature in base_metadata['Normalized_Description'].split('|'):
|
| 501 |
+
if ':' in feature:
|
| 502 |
+
key, value = feature.split(':', 1)
|
| 503 |
+
if not any(skip in key.lower() for skip in
|
| 504 |
+
['uniq id', 'product url', 'specifications', 'asin']):
|
| 505 |
+
features.append(f"{key.strip()}: {value.strip()}")
|
| 506 |
+
if features:
|
| 507 |
+
description.append("Key Features:")
|
| 508 |
+
description.extend(features[:3])
|
| 509 |
+
|
| 510 |
+
# Add relevant keywords
|
| 511 |
+
if keywords:
|
| 512 |
+
description.append("Related Terms: " + ", ".join(list(keywords)[:5]))
|
| 513 |
+
|
| 514 |
+
return "\n".join(description)
|
| 515 |
+
|
| 516 |
+
return None
|
| 517 |
+
|
| 518 |
+
def retrieve_context(query, image=None, top_k=5):
|
| 519 |
+
"""Enhanced context retrieval using both FAISS and metadata"""
|
| 520 |
+
# Initialize context lists
|
| 521 |
+
similar_items = []
|
| 522 |
+
context = []
|
| 523 |
+
|
| 524 |
+
if image is not None:
|
| 525 |
+
# Process image query
|
| 526 |
+
image_embedding = process_image(image)
|
| 527 |
+
image_embedding = image_embedding.reshape(1, -1)
|
| 528 |
+
similar_items = image_faiss.search(image_embedding[0], k=top_k)
|
| 529 |
+
else:
|
| 530 |
+
# Process text query with enhanced metadata filtering
|
| 531 |
+
relevant_products = filter_by_metadata(query, metadata)
|
| 532 |
+
|
| 533 |
+
tokens = clip_tokenizer(query).to(device)
|
| 534 |
+
with torch.no_grad():
|
| 535 |
+
text_embedding = clip_model.encode_text(tokens)
|
| 536 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
| 537 |
+
text_embedding = text_embedding.cpu().numpy()
|
| 538 |
+
|
| 539 |
+
# Get FAISS results
|
| 540 |
+
similar_items = text_faiss.search(text_embedding[0], k=top_k*2) # Get more results for filtering
|
| 541 |
+
|
| 542 |
+
# Filter results using metadata if available
|
| 543 |
+
if relevant_products:
|
| 544 |
+
similar_items = [item for item in similar_items if item['id'] in relevant_products][:top_k]
|
| 545 |
+
|
| 546 |
+
# Build enhanced context
|
| 547 |
+
for item in similar_items:
|
| 548 |
+
product = product_df[product_df['Uniq Id'] == item['id']].iloc[0]
|
| 549 |
+
enhanced_context = enhance_context_with_metadata(product, metadata)
|
| 550 |
+
if enhanced_context:
|
| 551 |
+
context.append(enhanced_context)
|
| 552 |
+
|
| 553 |
+
return "\n\n".join(context), similar_items
|
| 554 |
+
|
| 555 |
+
def display_product_images(similar_items, max_images=1):
|
| 556 |
+
displayed_images = []
|
| 557 |
+
|
| 558 |
+
for item in similar_items[:max_images]:
|
| 559 |
+
try:
|
| 560 |
+
# Get image URL from product data
|
| 561 |
+
image_url = item['Image'] if isinstance(item, pd.Series) else item.get('Image')
|
| 562 |
+
if not image_url:
|
| 563 |
+
continue
|
| 564 |
+
|
| 565 |
+
# Handle multiple image URLs
|
| 566 |
+
image_urls = image_url.split('|')
|
| 567 |
+
image_url = image_urls[0] # Take first image
|
| 568 |
+
|
| 569 |
+
# Load image
|
| 570 |
+
response = requests.get(image_url)
|
| 571 |
+
img = Image.open(BytesIO(response.content))
|
| 572 |
+
|
| 573 |
+
# Get product details
|
| 574 |
+
product_name = item['Product Name'] if isinstance(item, pd.Series) else item.get('product_name')
|
| 575 |
+
price = item['Selling Price'] if isinstance(item, pd.Series) else item.get('price', 0)
|
| 576 |
+
|
| 577 |
+
# Add to displayed images
|
| 578 |
+
displayed_images.append({
|
| 579 |
+
'image': img,
|
| 580 |
+
'product_name': product_name,
|
| 581 |
+
'price': float(price)
|
| 582 |
+
})
|
| 583 |
+
|
| 584 |
+
except Exception as e:
|
| 585 |
+
print(f"Error processing item: {str(e)}")
|
| 586 |
+
continue
|
| 587 |
+
|
| 588 |
+
return displayed_images
|
| 589 |
+
|
| 590 |
+
def classify_query(query):
|
| 591 |
+
"""Classify the type of query to determine the retrieval strategy."""
|
| 592 |
+
query_lower = query.lower()
|
| 593 |
+
if any(keyword in query_lower for keyword in ['compare', 'difference between']):
|
| 594 |
+
return 'comparison'
|
| 595 |
+
elif any(keyword in query_lower for keyword in ['show', 'picture', 'image', 'photo']):
|
| 596 |
+
return 'image_search'
|
| 597 |
+
else:
|
| 598 |
+
return 'product_info'
|
| 599 |
+
|
| 600 |
+
def boost_category_relevance(query, product, similarity_score):
|
| 601 |
+
query_terms = set(query.lower().split())
|
| 602 |
+
category_terms = set(product['Category'].lower().split())
|
| 603 |
+
category_overlap = len(query_terms & category_terms)
|
| 604 |
+
category_boost = 1 + (category_overlap * 0.2) # 20% boost per matching term
|
| 605 |
+
return similarity_score * category_boost
|
| 606 |
+
|
| 607 |
+
def hybrid_retrieval(query, top_k=5):
|
| 608 |
+
query_type = classify_query(query)
|
| 609 |
+
|
| 610 |
+
tokens = clip_tokenizer(query).to(device)
|
| 611 |
+
with torch.no_grad():
|
| 612 |
+
text_embedding = clip_model.encode_text(tokens)
|
| 613 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
| 614 |
+
text_embedding = text_embedding.cpu().numpy()
|
| 615 |
+
|
| 616 |
+
# First get text matches
|
| 617 |
+
text_results = text_faiss.search(text_embedding[0], k=top_k*2)
|
| 618 |
+
|
| 619 |
+
if query_type == 'image_search':
|
| 620 |
+
image_results = []
|
| 621 |
+
for item in text_results:
|
| 622 |
+
# Get original product with embeddings intact
|
| 623 |
+
product = product_df[product_df['Uniq Id'] == item['id']].iloc[0]
|
| 624 |
+
# Get image embeddings from embeddings_df instead
|
| 625 |
+
image_embedding = embeddings_df[embeddings_df['Uniq_Id'] == item['id']]['image_embeddings'].iloc[0]
|
| 626 |
+
similarity = np.dot(text_embedding.flatten(), image_embedding.flatten())
|
| 627 |
+
boosted_similarity = boost_category_relevance(query, product, similarity)
|
| 628 |
+
image_results.append((product, boosted_similarity))
|
| 629 |
+
|
| 630 |
+
image_results.sort(key=lambda x: x[1], reverse=True)
|
| 631 |
+
results = [item for item, _ in image_results[:top_k]]
|
| 632 |
+
else:
|
| 633 |
+
results = [product_df[product_df['Uniq Id'] == item['id']].iloc[0] for item in text_results[:top_k]]
|
| 634 |
+
|
| 635 |
+
return results, query_type
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
def fallback_text_search(query, top_k=10):
|
| 639 |
+
relevant_products = filter_by_metadata(query, metadata)
|
| 640 |
+
if not relevant_products:
|
| 641 |
+
# Check brand index specifically
|
| 642 |
+
if 'brand_index' in metadata:
|
| 643 |
+
query_terms = query.lower().split()
|
| 644 |
+
for term in query_terms:
|
| 645 |
+
if term in metadata['brand_index']:
|
| 646 |
+
relevant_products = set(metadata['brand_index'][term])
|
| 647 |
+
break
|
| 648 |
+
|
| 649 |
+
if relevant_products:
|
| 650 |
+
results = [product_df[product_df['Uniq Id'] == pid].iloc[0] for pid in list(relevant_products)[:top_k]]
|
| 651 |
+
else:
|
| 652 |
+
query_lower = query.lower()
|
| 653 |
+
results = product_df[
|
| 654 |
+
(product_df['Product Name'].str.lower().str.contains(query_lower)) |
|
| 655 |
+
(product_df['Category'].str.lower().str.contains(query_lower)) |
|
| 656 |
+
(product_df['Normalized Description'].str.lower().str.contains(query_lower))
|
| 657 |
+
].head(top_k)
|
| 658 |
+
|
| 659 |
+
return results
|
| 660 |
+
|
| 661 |
+
def generate_rag_response(query, context, image=None):
|
| 662 |
+
"""Enhanced RAG response generation"""
|
| 663 |
+
# Select template based on query type and metadata
|
| 664 |
+
if "compare" in query.lower() or "difference between" in query.lower() or "vs." in query.lower():
|
| 665 |
+
template = get_few_shot_product_comparison_template()
|
| 666 |
+
elif image is not None:
|
| 667 |
+
template = get_zero_shot_image_template()
|
| 668 |
+
else:
|
| 669 |
+
template = get_zero_shot_product_template()
|
| 670 |
+
|
| 671 |
+
# Create enhanced prompt with metadata context
|
| 672 |
+
prompt = PromptTemplate(
|
| 673 |
+
template=template,
|
| 674 |
+
input_variables=["query", "context"]
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
# Configure generation parameters
|
| 678 |
+
pipe = pipeline(
|
| 679 |
+
"text-generation",
|
| 680 |
+
model=llm_model,
|
| 681 |
+
tokenizer=llm_tokenizer,
|
| 682 |
+
max_new_tokens=300,
|
| 683 |
+
temperature=0.1,
|
| 684 |
+
do_sample=False,
|
| 685 |
+
repetition_penalty=1.2,
|
| 686 |
+
early_stopping=True,
|
| 687 |
+
truncation=True,
|
| 688 |
+
padding=True
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
# Generate and clean response
|
| 692 |
+
formatted_prompt = prompt.format(query=query, context=context)
|
| 693 |
+
response = pipe(formatted_prompt)[0]['generated_text']
|
| 694 |
+
|
| 695 |
+
# Clean response
|
| 696 |
+
for section in ["Answer:", "Question:", "Guidelines:", "Context:"]:
|
| 697 |
+
if section in response:
|
| 698 |
+
response = response.split(section)[-1].strip()
|
| 699 |
+
|
| 700 |
+
return response
|
| 701 |
+
|
| 702 |
+
def chatbot(query, image_input=None):
|
| 703 |
+
"""
|
| 704 |
+
Main chatbot function to handle queries and provide responses.
|
| 705 |
+
"""
|
| 706 |
+
if image_input is not None:
|
| 707 |
+
try:
|
| 708 |
+
# Convert URL to image if needed
|
| 709 |
+
if isinstance(image_input, str):
|
| 710 |
+
image_input = load_image_from_url(image_input)
|
| 711 |
+
elif not isinstance(image_input, Image.Image):
|
| 712 |
+
raise ValueError("Invalid image input type")
|
| 713 |
+
|
| 714 |
+
# Get context and generate response
|
| 715 |
+
context, _ = retrieve_context(query, image_input)
|
| 716 |
+
if not context:
|
| 717 |
+
return "No relevant products found for this image."
|
| 718 |
+
response = generate_rag_response(query, context, image_input)
|
| 719 |
+
return response
|
| 720 |
+
|
| 721 |
+
except Exception as e:
|
| 722 |
+
print(f"Error processing image: {str(e)}")
|
| 723 |
+
return f"Failed to process image: {str(e)}"
|
| 724 |
+
else:
|
| 725 |
+
try:
|
| 726 |
+
print(f"Processing query: {query}")
|
| 727 |
+
if text_faiss is None or image_faiss is None:
|
| 728 |
+
return "Search indexes not initialized. Please try again."
|
| 729 |
+
|
| 730 |
+
results, query_type = hybrid_retrieval(query)
|
| 731 |
+
print(f"Query type: {query_type}")
|
| 732 |
+
|
| 733 |
+
if not results and query_type == 'image_search':
|
| 734 |
+
print("No relevant images found. Falling back to text search.")
|
| 735 |
+
results = fallback_text_search(query)
|
| 736 |
+
|
| 737 |
+
if not results:
|
| 738 |
+
return "No relevant products found."
|
| 739 |
+
|
| 740 |
+
context = "\n\n".join([enhance_context_with_metadata(item, metadata) for item in results])
|
| 741 |
+
response = generate_rag_response(query, context)
|
| 742 |
+
|
| 743 |
+
if query_type == 'image_search':
|
| 744 |
+
print("\nFound matching products:")
|
| 745 |
+
displayed_images = display_product_images(results)
|
| 746 |
+
|
| 747 |
+
# Always return a dictionary with both text and images for image search queries
|
| 748 |
+
return {
|
| 749 |
+
'text': response,
|
| 750 |
+
'images': displayed_images
|
| 751 |
+
}
|
| 752 |
+
|
| 753 |
+
return response
|
| 754 |
+
except Exception as e:
|
| 755 |
+
print(f"Error processing query: {str(e)}")
|
| 756 |
+
return f"Error processing request: {str(e)}"
|
| 757 |
+
|
| 758 |
+
|
| 759 |
+
def cleanup_resources():
|
| 760 |
+
if torch.cuda.is_available():
|
| 761 |
+
torch.cuda.empty_cache()
|
| 762 |
+
print("GPU memory cleared")
|
README.md
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Amazon E-commerce Visual Assistant
|
| 2 |
+
|
| 3 |
+
A multimodal AI assistant that helps users search and explore Amazon products through natural language and image-based interactions.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- Text and image-based product search
|
| 8 |
+
- Product comparisons and recommendations
|
| 9 |
+
- Visual product recognition
|
| 10 |
+
- Detailed product information retrieval
|
| 11 |
+
- Price analysis and comparison
|
| 12 |
+
|
| 13 |
+
## Technologies Used
|
| 14 |
+
|
| 15 |
+
- FashionCLIP for visual understanding
|
| 16 |
+
- Mistral-7B Language Model for text generation
|
| 17 |
+
- FAISS for efficient similarity search
|
| 18 |
+
- Streamlit for the user interface
|
| 19 |
+
|
| 20 |
+
## Setup and Installation
|
| 21 |
+
|
| 22 |
+
1. Clone the repository:
|
| 23 |
+
```bash
|
| 24 |
+
git clone https://github.com/wisdom196473/amazon-multimodal-product-assistant.git
|
| 25 |
+
cd amazon-multimodal-product-assistant
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
2. Install dependencies:
|
| 29 |
+
```bash
|
| 30 |
+
pip install -r requirements.txt
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
3. Run the application:
|
| 34 |
+
```bash
|
| 35 |
+
streamlit run amazon_app.py
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## Project Structure
|
| 39 |
+
|
| 40 |
+
- `amazon_app.py`: Main Streamlit application
|
| 41 |
+
- `model.py`: Core AI model implementations
|
| 42 |
+
- `requirements.txt`: Project dependencies
|
| 43 |
+
|
| 44 |
+
## License
|
| 45 |
+
|
| 46 |
+
MIT License
|
Vision_AI.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
amazon_app.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
# Configure page
|
| 4 |
+
st.set_page_config(
|
| 5 |
+
page_title="E-commerce Visual Assistant",
|
| 6 |
+
page_icon="🛍️",
|
| 7 |
+
layout="wide"
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
from streamlit_chat import message
|
| 11 |
+
import torch
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import requests
|
| 14 |
+
from io import BytesIO
|
| 15 |
+
from model import initialize_models, load_data, chatbot, cleanup_resources
|
| 16 |
+
|
| 17 |
+
# Helper functions
|
| 18 |
+
def load_image_from_url(url):
|
| 19 |
+
try:
|
| 20 |
+
response = requests.get(url)
|
| 21 |
+
img = Image.open(BytesIO(response.content))
|
| 22 |
+
return img
|
| 23 |
+
except Exception as e:
|
| 24 |
+
st.error(f"Error loading image from URL: {str(e)}")
|
| 25 |
+
return None
|
| 26 |
+
|
| 27 |
+
def initialize_assistant():
|
| 28 |
+
if not st.session_state.models_loaded:
|
| 29 |
+
with st.spinner("Loading models and data..."):
|
| 30 |
+
initialize_models()
|
| 31 |
+
load_data()
|
| 32 |
+
st.session_state.models_loaded = True
|
| 33 |
+
st.success("Assistant is ready!")
|
| 34 |
+
|
| 35 |
+
def display_chat_history():
|
| 36 |
+
for message in st.session_state.messages:
|
| 37 |
+
with st.chat_message(message["role"]):
|
| 38 |
+
st.markdown(message["content"])
|
| 39 |
+
if "image" in message:
|
| 40 |
+
st.image(message["image"], caption="Uploaded Image", width=200)
|
| 41 |
+
if "display_images" in message:
|
| 42 |
+
# Since we only have one image, we don't need multiple columns
|
| 43 |
+
img_data = message["display_images"][0] # Get the first (and only) image
|
| 44 |
+
st.image(
|
| 45 |
+
img_data['image'],
|
| 46 |
+
caption=f"{img_data['product_name']}\nPrice: ${img_data['price']:.2f}",
|
| 47 |
+
width=350 # Adjusted width for single image display
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
def handle_user_input(prompt, uploaded_image):
|
| 51 |
+
# Add user message
|
| 52 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 53 |
+
|
| 54 |
+
# Generate response
|
| 55 |
+
with st.spinner("Processing your request..."):
|
| 56 |
+
try:
|
| 57 |
+
response = chatbot(prompt, image_input=uploaded_image)
|
| 58 |
+
|
| 59 |
+
if isinstance(response, dict):
|
| 60 |
+
assistant_message = {
|
| 61 |
+
"role": "assistant",
|
| 62 |
+
"content": response['text']
|
| 63 |
+
}
|
| 64 |
+
if 'images' in response and response['images']:
|
| 65 |
+
assistant_message["display_images"] = response['images']
|
| 66 |
+
st.session_state.messages.append(assistant_message)
|
| 67 |
+
else:
|
| 68 |
+
st.session_state.messages.append({
|
| 69 |
+
"role": "assistant",
|
| 70 |
+
"content": response
|
| 71 |
+
})
|
| 72 |
+
|
| 73 |
+
except Exception as e:
|
| 74 |
+
st.error(f"Error: {str(e)}")
|
| 75 |
+
st.session_state.messages.append({
|
| 76 |
+
"role": "assistant",
|
| 77 |
+
"content": f"I encountered an error: {str(e)}"
|
| 78 |
+
})
|
| 79 |
+
|
| 80 |
+
st.rerun()
|
| 81 |
+
|
| 82 |
+
# Custom CSS for enhanced styling
|
| 83 |
+
st.markdown("""
|
| 84 |
+
<style>
|
| 85 |
+
/* Main container styling */
|
| 86 |
+
.main {
|
| 87 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #e8edf2 100%);
|
| 88 |
+
padding: 20px;
|
| 89 |
+
border-radius: 15px;
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
/* Header styling */
|
| 93 |
+
.stTitle {
|
| 94 |
+
color: #1e3d59;
|
| 95 |
+
font-size: 2.5rem !important;
|
| 96 |
+
text-align: center;
|
| 97 |
+
padding: 20px;
|
| 98 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
/* Sidebar styling */
|
| 102 |
+
.css-1d391kg {
|
| 103 |
+
background: linear-gradient(180deg, #1e3d59 0%, #2b5876 100%);
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
/* Chat container styling */
|
| 107 |
+
.stChatMessage {
|
| 108 |
+
background-color: white;
|
| 109 |
+
border-radius: 15px;
|
| 110 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
| 111 |
+
margin: 10px 0;
|
| 112 |
+
padding: 15px;
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
/* Input box styling */
|
| 116 |
+
.stTextInput > div > div > input {
|
| 117 |
+
border-radius: 20px;
|
| 118 |
+
border: 2px solid #1e3d59;
|
| 119 |
+
padding: 10px 20px;
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
/* Radio button styling */
|
| 123 |
+
.stRadio > label {
|
| 124 |
+
background-color: white;
|
| 125 |
+
padding: 10px 20px;
|
| 126 |
+
border-radius: 10px;
|
| 127 |
+
margin: 5px;
|
| 128 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
/* Button styling */
|
| 132 |
+
.stButton > button {
|
| 133 |
+
background: linear-gradient(90deg, #1e3d59 0%, #2b5876 100%);
|
| 134 |
+
color: white;
|
| 135 |
+
border-radius: 20px;
|
| 136 |
+
padding: 10px 25px;
|
| 137 |
+
border: none;
|
| 138 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
| 139 |
+
transition: all 0.3s ease;
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
.stButton > button:hover {
|
| 143 |
+
transform: translateY(-2px);
|
| 144 |
+
box-shadow: 0 6px 8px rgba(0,0,0,0.2);
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
/* Footer styling */
|
| 148 |
+
footer {
|
| 149 |
+
background-color: white;
|
| 150 |
+
border-radius: 10px;
|
| 151 |
+
padding: 20px;
|
| 152 |
+
margin-top: 30px;
|
| 153 |
+
text-align: center;
|
| 154 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
| 155 |
+
}
|
| 156 |
+
</style>
|
| 157 |
+
""", unsafe_allow_html=True)
|
| 158 |
+
|
| 159 |
+
# Initialize session state
|
| 160 |
+
if 'messages' not in st.session_state:
|
| 161 |
+
st.session_state.messages = []
|
| 162 |
+
if 'models_loaded' not in st.session_state:
|
| 163 |
+
st.session_state.models_loaded = False
|
| 164 |
+
|
| 165 |
+
# Main title with enhanced styling
|
| 166 |
+
st.markdown("<h1 class='stTitle'>🛍️ Amazon E-commerce Visual Assistant</h1>", unsafe_allow_html=True)
|
| 167 |
+
|
| 168 |
+
# Sidebar configuration with enhanced styling
|
| 169 |
+
with st.sidebar:
|
| 170 |
+
st.title("Assistant Features")
|
| 171 |
+
|
| 172 |
+
st.markdown("### 🤖 How It Works")
|
| 173 |
+
st.markdown("""
|
| 174 |
+
This AI-powered shopping assistant combines:
|
| 175 |
+
|
| 176 |
+
**🧠 Advanced Technologies**
|
| 177 |
+
- FashionCLIP Visual AI
|
| 178 |
+
- Mistral-7B Language Model
|
| 179 |
+
- Multimodal Understanding
|
| 180 |
+
|
| 181 |
+
**💫 Capabilities**
|
| 182 |
+
- Product Search & Recognition
|
| 183 |
+
- Visual Analysis
|
| 184 |
+
- Detailed Comparisons
|
| 185 |
+
- Price Analysis
|
| 186 |
+
""")
|
| 187 |
+
|
| 188 |
+
st.markdown("---")
|
| 189 |
+
|
| 190 |
+
st.markdown("### 👥 Development Team")
|
| 191 |
+
team_members = {
|
| 192 |
+
"Yu-Chih (Wisdom) Chen",
|
| 193 |
+
"Feier Xu",
|
| 194 |
+
"Yanchen Dong",
|
| 195 |
+
"Kitae Kim"
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
for name in team_members:
|
| 199 |
+
st.markdown(f"**{name}**")
|
| 200 |
+
|
| 201 |
+
st.markdown("---")
|
| 202 |
+
|
| 203 |
+
if st.button("🔄 Reset Chat"):
|
| 204 |
+
st.session_state.messages = []
|
| 205 |
+
st.rerun()
|
| 206 |
+
|
| 207 |
+
# Main chat interface
|
| 208 |
+
def main():
|
| 209 |
+
# Initialize assistant
|
| 210 |
+
initialize_assistant()
|
| 211 |
+
|
| 212 |
+
# Chat container
|
| 213 |
+
chat_container = st.container()
|
| 214 |
+
|
| 215 |
+
# User input section at the bottom
|
| 216 |
+
input_container = st.container()
|
| 217 |
+
|
| 218 |
+
with input_container:
|
| 219 |
+
# Chat input
|
| 220 |
+
prompt = st.chat_input("What would you like to know?")
|
| 221 |
+
|
| 222 |
+
# Input options below chat input
|
| 223 |
+
col1, col2, col3 = st.columns([1,1,1])
|
| 224 |
+
with col1:
|
| 225 |
+
input_option = st.radio(
|
| 226 |
+
"Input Method:",
|
| 227 |
+
("Text Only", "Upload Image", "Image URL"),
|
| 228 |
+
key="input_method"
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Handle different input methods
|
| 232 |
+
uploaded_image = None
|
| 233 |
+
if input_option == "Upload Image":
|
| 234 |
+
with col2:
|
| 235 |
+
uploaded_file = st.file_uploader("Choose image", type=["jpg", "jpeg", "png"])
|
| 236 |
+
if uploaded_file:
|
| 237 |
+
uploaded_image = Image.open(uploaded_file)
|
| 238 |
+
st.image(uploaded_image, caption="Uploaded Image", width=200)
|
| 239 |
+
|
| 240 |
+
elif input_option == "Image URL":
|
| 241 |
+
with col2:
|
| 242 |
+
image_url = st.text_input("Enter image URL")
|
| 243 |
+
if image_url:
|
| 244 |
+
uploaded_image = load_image_from_url(image_url)
|
| 245 |
+
if uploaded_image:
|
| 246 |
+
st.image(uploaded_image, caption="Image from URL", width=200)
|
| 247 |
+
|
| 248 |
+
# Display chat history
|
| 249 |
+
with chat_container:
|
| 250 |
+
display_chat_history()
|
| 251 |
+
|
| 252 |
+
# Handle user input and generate response
|
| 253 |
+
if prompt:
|
| 254 |
+
handle_user_input(prompt, uploaded_image)
|
| 255 |
+
|
| 256 |
+
# Footer
|
| 257 |
+
st.markdown("""
|
| 258 |
+
<footer>
|
| 259 |
+
<h3>💡 Tips for Best Results</h3>
|
| 260 |
+
<p>Be specific in your questions for more accurate responses!</p>
|
| 261 |
+
<p>Try asking about product features, comparisons, or prices.</p>
|
| 262 |
+
</footer>
|
| 263 |
+
""", unsafe_allow_html=True)
|
| 264 |
+
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
try:
|
| 267 |
+
main()
|
| 268 |
+
finally:
|
| 269 |
+
cleanup_resources()
|
clip_embedding_evaluation_results/evaluation_metrics.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Timestamp,Model,Dataset,Recall@1,Precision@1,Recall@5,Precision@5,NDCG@5,Recall@10,Precision@10,NDCG@10
|
| 2 |
+
20241205,FashionCLIP-FAISS,Amazon Product Dataset,0.638,0.638,0.851,0.17,0.756,0.901,0.09,0.772
|
model.py
ADDED
|
@@ -0,0 +1,762 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Standard libraries
|
| 2 |
+
import os
|
| 3 |
+
import io
|
| 4 |
+
import json
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from typing import Dict, List, Tuple, Optional
|
| 8 |
+
import requests
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
|
| 13 |
+
# Deep learning frameworks
|
| 14 |
+
import torch
|
| 15 |
+
from torch.cuda.amp import autocast
|
| 16 |
+
import open_clip
|
| 17 |
+
|
| 18 |
+
# Hugging Face
|
| 19 |
+
from transformers import (
|
| 20 |
+
AutoTokenizer,
|
| 21 |
+
AutoModelForCausalLM,
|
| 22 |
+
BitsAndBytesConfig,
|
| 23 |
+
pipeline,
|
| 24 |
+
PreTrainedModel,
|
| 25 |
+
PreTrainedTokenizer
|
| 26 |
+
)
|
| 27 |
+
from huggingface_hub import hf_hub_download
|
| 28 |
+
from langchain.prompts import PromptTemplate
|
| 29 |
+
|
| 30 |
+
# Vector database
|
| 31 |
+
import faiss
|
| 32 |
+
|
| 33 |
+
# Type hints
|
| 34 |
+
from typing import Dict, List, Tuple, Optional, Union
|
| 35 |
+
|
| 36 |
+
# Global variables
|
| 37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 38 |
+
clip_model: Optional[PreTrainedModel] = None
|
| 39 |
+
clip_preprocess: Optional[callable] = None
|
| 40 |
+
clip_tokenizer: Optional[PreTrainedTokenizer] = None
|
| 41 |
+
llm_tokenizer: Optional[PreTrainedTokenizer] = None
|
| 42 |
+
llm_model: Optional[PreTrainedModel] = None
|
| 43 |
+
product_df: Optional[pd.DataFrame] = None
|
| 44 |
+
metadata: Dict = {}
|
| 45 |
+
embeddings_df: Optional[pd.DataFrame] = None
|
| 46 |
+
text_faiss: Optional[object] = None
|
| 47 |
+
image_faiss: Optional[object] = None
|
| 48 |
+
|
| 49 |
+
def initialize_models() -> bool:
|
| 50 |
+
"""
|
| 51 |
+
Initialize CLIP and LLM models with proper error handling and GPU optimization.
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
bool: True if initialization successful, raises RuntimeError otherwise
|
| 55 |
+
"""
|
| 56 |
+
global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
print(f"Initializing models on device: {device}")
|
| 60 |
+
|
| 61 |
+
# Initialize CLIP model with error handling
|
| 62 |
+
try:
|
| 63 |
+
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
|
| 64 |
+
'hf-hub:Marqo/marqo-fashionCLIP'
|
| 65 |
+
)
|
| 66 |
+
clip_model = clip_model.to(device)
|
| 67 |
+
clip_model.eval()
|
| 68 |
+
clip_tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
|
| 69 |
+
print("CLIP model initialized successfully")
|
| 70 |
+
except Exception as e:
|
| 71 |
+
raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
| 72 |
+
|
| 73 |
+
# Initialize LLM with optimized settings
|
| 74 |
+
try:
|
| 75 |
+
model_name = "mistralai/Mistral-7B-v0.1"
|
| 76 |
+
quantization_config = BitsAndBytesConfig(
|
| 77 |
+
load_in_4bit=True,
|
| 78 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 79 |
+
bnb_4bit_use_double_quant=True,
|
| 80 |
+
bnb_4bit_quant_type="nf4"
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(
|
| 84 |
+
model_name,
|
| 85 |
+
padding_side="left",
|
| 86 |
+
truncation_side="left"
|
| 87 |
+
)
|
| 88 |
+
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 89 |
+
|
| 90 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 91 |
+
model_name,
|
| 92 |
+
quantization_config=quantization_config,
|
| 93 |
+
device_map="auto",
|
| 94 |
+
torch_dtype=torch.float16
|
| 95 |
+
)
|
| 96 |
+
llm_model.eval()
|
| 97 |
+
print("LLM initialized successfully")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
raise RuntimeError(f"Failed to initialize LLM: {str(e)}")
|
| 100 |
+
|
| 101 |
+
return True
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
| 105 |
+
|
| 106 |
+
# Data loading
|
| 107 |
+
def load_data() -> bool:
|
| 108 |
+
"""
|
| 109 |
+
Load and initialize all required data with enhanced metadata support and error handling.
|
| 110 |
+
|
| 111 |
+
Returns:
|
| 112 |
+
bool: True if data loading successful, raises RuntimeError otherwise
|
| 113 |
+
"""
|
| 114 |
+
global product_df, metadata, embeddings_df, text_faiss, image_faiss
|
| 115 |
+
|
| 116 |
+
try:
|
| 117 |
+
print("Loading product data...")
|
| 118 |
+
# Load cleaned product data
|
| 119 |
+
try:
|
| 120 |
+
cleaned_data_path = hf_hub_download(
|
| 121 |
+
repo_id="chen196473/amazon_product_2020_cleaned",
|
| 122 |
+
filename="amazon_cleaned.parquet",
|
| 123 |
+
repo_type="dataset"
|
| 124 |
+
)
|
| 125 |
+
product_df = pd.read_parquet(cleaned_data_path)
|
| 126 |
+
|
| 127 |
+
# Add validation columns
|
| 128 |
+
product_df['Has_Valid_Image'] = product_df['Processed Image'].notna()
|
| 129 |
+
product_df['Image_Status'] = product_df['Has_Valid_Image'].map({
|
| 130 |
+
True: 'valid',
|
| 131 |
+
False: 'invalid'
|
| 132 |
+
})
|
| 133 |
+
print("Product data loaded successfully")
|
| 134 |
+
except Exception as e:
|
| 135 |
+
raise RuntimeError(f"Failed to load product data: {str(e)}")
|
| 136 |
+
|
| 137 |
+
# Load enhanced metadata
|
| 138 |
+
print("Loading metadata...")
|
| 139 |
+
try:
|
| 140 |
+
metadata = {}
|
| 141 |
+
metadata_files = [
|
| 142 |
+
'base_metadata.json',
|
| 143 |
+
'category_index.json',
|
| 144 |
+
'price_range_index.json',
|
| 145 |
+
'keyword_index.json',
|
| 146 |
+
'brand_index.json',
|
| 147 |
+
'product_name_index.json'
|
| 148 |
+
]
|
| 149 |
+
|
| 150 |
+
for file in metadata_files:
|
| 151 |
+
file_path = hf_hub_download(
|
| 152 |
+
repo_id="chen196473/amazon_product_2020_metadata",
|
| 153 |
+
filename=file,
|
| 154 |
+
repo_type="dataset"
|
| 155 |
+
)
|
| 156 |
+
with open(file_path, 'r') as f:
|
| 157 |
+
index_name = file.replace('.json', '')
|
| 158 |
+
data = json.load(f)
|
| 159 |
+
|
| 160 |
+
if index_name == 'base_metadata':
|
| 161 |
+
data = {item['Uniq_Id']: item for item in data}
|
| 162 |
+
for item in data.values():
|
| 163 |
+
if 'Keywords' in item:
|
| 164 |
+
item['Keywords'] = set(item['Keywords'])
|
| 165 |
+
|
| 166 |
+
metadata[index_name] = data
|
| 167 |
+
print("Metadata loaded successfully")
|
| 168 |
+
except Exception as e:
|
| 169 |
+
raise RuntimeError(f"Failed to load metadata: {str(e)}")
|
| 170 |
+
|
| 171 |
+
# Load embeddings
|
| 172 |
+
print("Loading embeddings...")
|
| 173 |
+
try:
|
| 174 |
+
text_embeddings_dict, image_embeddings_dict = load_embeddings_from_huggingface(
|
| 175 |
+
"chen196473/amazon_vector_database"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Create embeddings DataFrame
|
| 179 |
+
embeddings_df = pd.DataFrame({
|
| 180 |
+
'text_embeddings': list(text_embeddings_dict.values()),
|
| 181 |
+
'image_embeddings': list(image_embeddings_dict.values()),
|
| 182 |
+
'Uniq_Id': list(text_embeddings_dict.keys())
|
| 183 |
+
})
|
| 184 |
+
|
| 185 |
+
# Merge with product data
|
| 186 |
+
product_df = product_df.merge(
|
| 187 |
+
embeddings_df,
|
| 188 |
+
left_on='Uniq Id',
|
| 189 |
+
right_on='Uniq_Id',
|
| 190 |
+
how='inner'
|
| 191 |
+
)
|
| 192 |
+
print("Embeddings loaded and merged successfully")
|
| 193 |
+
|
| 194 |
+
# Create FAISS indexes
|
| 195 |
+
print("Creating FAISS indexes...")
|
| 196 |
+
try:
|
| 197 |
+
create_faiss_indexes(text_embeddings_dict, image_embeddings_dict)
|
| 198 |
+
print("FAISS indexes created successfully")
|
| 199 |
+
|
| 200 |
+
# Verify FAISS indexes are properly initialized and contain data
|
| 201 |
+
if text_faiss is None or image_faiss is None:
|
| 202 |
+
raise RuntimeError("FAISS indexes were not properly initialized")
|
| 203 |
+
|
| 204 |
+
# Test a simple query to verify indexes are working
|
| 205 |
+
test_query = "test"
|
| 206 |
+
tokens = clip_tokenizer(test_query).to(device)
|
| 207 |
+
with torch.no_grad():
|
| 208 |
+
text_embedding = clip_model.encode_text(tokens)
|
| 209 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
| 210 |
+
text_embedding = text_embedding.cpu().numpy()
|
| 211 |
+
|
| 212 |
+
# Verify search works
|
| 213 |
+
test_results = text_faiss.search(text_embedding[0], k=1)
|
| 214 |
+
if not test_results:
|
| 215 |
+
raise RuntimeError("FAISS indexes are empty")
|
| 216 |
+
|
| 217 |
+
print("FAISS indexes verified successfully")
|
| 218 |
+
|
| 219 |
+
except Exception as e:
|
| 220 |
+
raise RuntimeError(f"Failed to create or verify FAISS indexes: {str(e)}")
|
| 221 |
+
|
| 222 |
+
except Exception as e:
|
| 223 |
+
raise RuntimeError(f"Failed to load embeddings: {str(e)}")
|
| 224 |
+
|
| 225 |
+
# Validate required columns
|
| 226 |
+
required_columns = [
|
| 227 |
+
'Uniq Id', 'Product Name', 'Category', 'Selling Price',
|
| 228 |
+
'Model Number', 'Image', 'Normalized Description'
|
| 229 |
+
]
|
| 230 |
+
missing_cols = set(required_columns) - set(product_df.columns)
|
| 231 |
+
if missing_cols:
|
| 232 |
+
raise ValueError(f"Missing required columns: {missing_cols}")
|
| 233 |
+
|
| 234 |
+
# Add enhanced metadata fields
|
| 235 |
+
if 'Search_Text' not in product_df.columns:
|
| 236 |
+
product_df['Search_Text'] = product_df.apply(
|
| 237 |
+
lambda x: metadata['base_metadata'].get(x['Uniq Id'], {}).get('Search_Text', ''),
|
| 238 |
+
axis=1
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# Final verification of loaded data
|
| 242 |
+
if product_df is None or product_df.empty:
|
| 243 |
+
raise RuntimeError("Product DataFrame is empty or not initialized")
|
| 244 |
+
|
| 245 |
+
if not metadata:
|
| 246 |
+
raise RuntimeError("Metadata dictionary is empty")
|
| 247 |
+
|
| 248 |
+
if embeddings_df is None or embeddings_df.empty:
|
| 249 |
+
raise RuntimeError("Embeddings DataFrame is empty or not initialized")
|
| 250 |
+
|
| 251 |
+
print("Data loading completed successfully")
|
| 252 |
+
return True
|
| 253 |
+
|
| 254 |
+
except Exception as e:
|
| 255 |
+
# Clean up any partially loaded data
|
| 256 |
+
product_df = None
|
| 257 |
+
metadata = {}
|
| 258 |
+
embeddings_df = None
|
| 259 |
+
text_faiss = None
|
| 260 |
+
image_faiss = None
|
| 261 |
+
raise RuntimeError(f"Data loading failed: {str(e)}")
|
| 262 |
+
|
| 263 |
+
def load_embeddings_from_huggingface(repo_id: str) -> Tuple[Dict, Dict]:
|
| 264 |
+
"""
|
| 265 |
+
Load embeddings from Hugging Face repository with enhanced error handling.
|
| 266 |
+
|
| 267 |
+
Args:
|
| 268 |
+
repo_id (str): Hugging Face repository ID
|
| 269 |
+
|
| 270 |
+
Returns:
|
| 271 |
+
Tuple[Dict, Dict]: Dictionaries containing text and image embeddings
|
| 272 |
+
"""
|
| 273 |
+
print("Loading embeddings from Hugging Face...")
|
| 274 |
+
try:
|
| 275 |
+
file_path = hf_hub_download(
|
| 276 |
+
repo_id=repo_id,
|
| 277 |
+
filename="embeddings.parquet",
|
| 278 |
+
repo_type="dataset"
|
| 279 |
+
)
|
| 280 |
+
df = pd.read_parquet(file_path)
|
| 281 |
+
|
| 282 |
+
# Extract embedding columns
|
| 283 |
+
text_cols = [col for col in df.columns if col.startswith('text_embedding_')]
|
| 284 |
+
image_cols = [col for col in df.columns if col.startswith('image_embedding_')]
|
| 285 |
+
|
| 286 |
+
# Create embedding dictionaries
|
| 287 |
+
text_embeddings_dict = {
|
| 288 |
+
row['Uniq_Id']: row[text_cols].values.astype(np.float32)
|
| 289 |
+
for _, row in df.iterrows()
|
| 290 |
+
}
|
| 291 |
+
image_embeddings_dict = {
|
| 292 |
+
row['Uniq_Id']: row[image_cols].values.astype(np.float32)
|
| 293 |
+
for _, row in df.iterrows()
|
| 294 |
+
}
|
| 295 |
+
|
| 296 |
+
print(f"Successfully loaded {len(text_embeddings_dict)} embeddings")
|
| 297 |
+
return text_embeddings_dict, image_embeddings_dict
|
| 298 |
+
|
| 299 |
+
except Exception as e:
|
| 300 |
+
raise RuntimeError(f"Failed to load embeddings from Hugging Face: {str(e)}")
|
| 301 |
+
|
| 302 |
+
# FAISS index creation
|
| 303 |
+
class MultiModalFAISSIndex:
|
| 304 |
+
def __init__(self, dimension, index_type='L2'):
|
| 305 |
+
import faiss
|
| 306 |
+
self.dimension = dimension
|
| 307 |
+
self.index = faiss.IndexFlatL2(dimension) if index_type == 'L2' else faiss.IndexFlatIP(dimension)
|
| 308 |
+
self.id_to_metadata = {}
|
| 309 |
+
|
| 310 |
+
def add_embeddings(self, embeddings, metadata_list):
|
| 311 |
+
import numpy as np
|
| 312 |
+
embeddings = np.array(embeddings).astype('float32')
|
| 313 |
+
self.index.add(embeddings)
|
| 314 |
+
for i, metadata in enumerate(metadata_list):
|
| 315 |
+
self.id_to_metadata[i] = metadata
|
| 316 |
+
|
| 317 |
+
def search(self, query_embedding, k=5):
|
| 318 |
+
import numpy as np
|
| 319 |
+
query_embedding = np.array([query_embedding]).astype('float32')
|
| 320 |
+
distances, indices = self.index.search(query_embedding, k)
|
| 321 |
+
results = []
|
| 322 |
+
for idx in indices[0]:
|
| 323 |
+
if idx in self.id_to_metadata:
|
| 324 |
+
results.append(self.id_to_metadata[idx])
|
| 325 |
+
return results
|
| 326 |
+
|
| 327 |
+
def create_faiss_indexes(text_embeddings_dict, image_embeddings_dict):
|
| 328 |
+
"""Create FAISS indexes with error handling"""
|
| 329 |
+
global text_faiss, image_faiss
|
| 330 |
+
|
| 331 |
+
try:
|
| 332 |
+
# Get embedding dimension
|
| 333 |
+
text_dim = next(iter(text_embeddings_dict.values())).shape[0]
|
| 334 |
+
image_dim = next(iter(image_embeddings_dict.values())).shape[0]
|
| 335 |
+
|
| 336 |
+
# Create indexes
|
| 337 |
+
text_faiss = MultiModalFAISSIndex(text_dim)
|
| 338 |
+
image_faiss = MultiModalFAISSIndex(image_dim)
|
| 339 |
+
|
| 340 |
+
# Prepare text embeddings and metadata
|
| 341 |
+
text_embeddings = []
|
| 342 |
+
text_metadata = []
|
| 343 |
+
for text_id, embedding in text_embeddings_dict.items():
|
| 344 |
+
if text_id in product_df['Uniq Id'].values:
|
| 345 |
+
product = product_df[product_df['Uniq Id'] == text_id].iloc[0]
|
| 346 |
+
text_embeddings.append(embedding)
|
| 347 |
+
text_metadata.append({
|
| 348 |
+
'id': text_id,
|
| 349 |
+
'description': product['Normalized Description'],
|
| 350 |
+
'product_name': product['Product Name']
|
| 351 |
+
})
|
| 352 |
+
|
| 353 |
+
# Add text embeddings
|
| 354 |
+
if text_embeddings:
|
| 355 |
+
text_faiss.add_embeddings(text_embeddings, text_metadata)
|
| 356 |
+
|
| 357 |
+
# Prepare image embeddings and metadata
|
| 358 |
+
image_embeddings = []
|
| 359 |
+
image_metadata = []
|
| 360 |
+
for image_id, embedding in image_embeddings_dict.items():
|
| 361 |
+
if image_id in product_df['Uniq Id'].values:
|
| 362 |
+
product = product_df[product_df['Uniq Id'] == image_id].iloc[0]
|
| 363 |
+
image_embeddings.append(embedding)
|
| 364 |
+
image_metadata.append({
|
| 365 |
+
'id': image_id,
|
| 366 |
+
'image_url': product['Image'],
|
| 367 |
+
'product_name': product['Product Name']
|
| 368 |
+
})
|
| 369 |
+
|
| 370 |
+
# Add image embeddings
|
| 371 |
+
if image_embeddings:
|
| 372 |
+
image_faiss.add_embeddings(image_embeddings, image_metadata)
|
| 373 |
+
|
| 374 |
+
return True
|
| 375 |
+
|
| 376 |
+
except Exception as e:
|
| 377 |
+
raise RuntimeError(f"Failed to create FAISS indexes: {str(e)}")
|
| 378 |
+
|
| 379 |
+
def get_few_shot_product_comparison_template():
|
| 380 |
+
return """Compare these specific products based on their actual features and specifications:
|
| 381 |
+
|
| 382 |
+
Example 1:
|
| 383 |
+
Question: Compare iPhone 13 and Samsung Galaxy S21
|
| 384 |
+
Answer: The iPhone 13 features a 6.1-inch Super Retina XDR display and dual 12MP cameras, while the Galaxy S21 has a 6.2-inch Dynamic AMOLED display and triple camera setup. Both phones offer 5G connectivity, but the iPhone uses A15 Bionic chip while S21 uses Snapdragon 888.
|
| 385 |
+
|
| 386 |
+
Example 2:
|
| 387 |
+
Question: Compare Amazon Echo Dot and Google Nest Mini
|
| 388 |
+
Answer: The Amazon Echo Dot features Alexa voice assistant and a 1.6-inch speaker, while the Google Nest Mini comes with Google Assistant and a 40mm driver. Both devices offer smart home control and music playback, but differ in their ecosystem integration.
|
| 389 |
+
|
| 390 |
+
Current Question: {query}
|
| 391 |
+
Context: {context}
|
| 392 |
+
|
| 393 |
+
Guidelines:
|
| 394 |
+
- Only compare the specific products mentioned in the query
|
| 395 |
+
- Focus on actual product features and specifications
|
| 396 |
+
- Keep response to 2-3 clear sentences
|
| 397 |
+
- Ensure factual accuracy based on the context provided
|
| 398 |
+
|
| 399 |
+
Answer:"""
|
| 400 |
+
|
| 401 |
+
def get_zero_shot_product_template():
|
| 402 |
+
return """You are a product information specialist. Describe only the specific product's actual features based on the provided context.
|
| 403 |
+
|
| 404 |
+
Context: {context}
|
| 405 |
+
|
| 406 |
+
Question: {query}
|
| 407 |
+
|
| 408 |
+
Guidelines:
|
| 409 |
+
- Only describe the specific product mentioned in the query
|
| 410 |
+
- Focus on actual features and specifications from the context
|
| 411 |
+
- Keep response to 2-3 factual sentences
|
| 412 |
+
- Ensure information accuracy
|
| 413 |
+
|
| 414 |
+
Answer:"""
|
| 415 |
+
|
| 416 |
+
def get_zero_shot_image_template():
|
| 417 |
+
return """Analyze this product image and provide a concise description:
|
| 418 |
+
|
| 419 |
+
Product Information:
|
| 420 |
+
{context}
|
| 421 |
+
|
| 422 |
+
Guidelines:
|
| 423 |
+
- Describe the main product features and intended use
|
| 424 |
+
- Highlight key specifications and materials
|
| 425 |
+
- Keep response to 2-3 sentences
|
| 426 |
+
- Focus on practical information
|
| 427 |
+
|
| 428 |
+
Answer:"""
|
| 429 |
+
|
| 430 |
+
# Image processing functions
|
| 431 |
+
def process_image(image):
|
| 432 |
+
try:
|
| 433 |
+
if isinstance(image, str):
|
| 434 |
+
response = requests.get(image)
|
| 435 |
+
image = Image.open(io.BytesIO(response.content))
|
| 436 |
+
|
| 437 |
+
processed_image = clip_preprocess(image).unsqueeze(0).to(device)
|
| 438 |
+
|
| 439 |
+
with torch.no_grad():
|
| 440 |
+
image_features = clip_model.encode_image(processed_image)
|
| 441 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
| 442 |
+
|
| 443 |
+
return image_features.cpu().numpy()
|
| 444 |
+
except Exception as e:
|
| 445 |
+
raise Exception(f"Error processing image: {str(e)}")
|
| 446 |
+
|
| 447 |
+
def load_image_from_url(url):
|
| 448 |
+
response = requests.get(url)
|
| 449 |
+
if response.status_code == 200:
|
| 450 |
+
return Image.open(io.BytesIO(response.content))
|
| 451 |
+
else:
|
| 452 |
+
raise Exception(f"Failed to fetch image from URL: {url}, Status Code: {response.status_code}")
|
| 453 |
+
|
| 454 |
+
# Context retrieval and enhancement
|
| 455 |
+
def filter_by_metadata(query, metadata_index):
|
| 456 |
+
relevant_products = set()
|
| 457 |
+
|
| 458 |
+
# Check category index
|
| 459 |
+
if 'category_index' in metadata_index:
|
| 460 |
+
categories = metadata_index['category_index']
|
| 461 |
+
for category in categories:
|
| 462 |
+
if any(term.lower() in category.lower() for term in query.split()):
|
| 463 |
+
relevant_products.update(categories[category])
|
| 464 |
+
|
| 465 |
+
# Check product name index
|
| 466 |
+
if 'product_name_index' in metadata_index:
|
| 467 |
+
product_names = metadata_index['product_name_index']
|
| 468 |
+
for term in query.split():
|
| 469 |
+
if term.lower() in product_names:
|
| 470 |
+
relevant_products.update(product_names[term.lower()])
|
| 471 |
+
|
| 472 |
+
# Check price ranges
|
| 473 |
+
price_terms = {'cheap', 'expensive', 'price', 'cost', 'affordable'}
|
| 474 |
+
if any(term in query.lower() for term in price_terms) and 'price_range_index' in metadata_index:
|
| 475 |
+
price_ranges = metadata_index['price_range_index']
|
| 476 |
+
for price_range in price_ranges:
|
| 477 |
+
relevant_products.update(price_ranges[price_range])
|
| 478 |
+
|
| 479 |
+
return relevant_products if relevant_products else None
|
| 480 |
+
|
| 481 |
+
def enhance_context_with_metadata(product, metadata_index):
|
| 482 |
+
"""Enhanced context building using new metadata structure"""
|
| 483 |
+
# Access base_metadata using product ID directly since it's now a dictionary
|
| 484 |
+
base_metadata = metadata_index['base_metadata'].get(product['Uniq Id'])
|
| 485 |
+
|
| 486 |
+
if base_metadata:
|
| 487 |
+
# Get keywords and search text from enhanced metadata
|
| 488 |
+
keywords = base_metadata.get('Keywords', [])
|
| 489 |
+
search_text = base_metadata.get('Search_Text', '')
|
| 490 |
+
|
| 491 |
+
# Build enhanced description
|
| 492 |
+
description = []
|
| 493 |
+
description.append(f"Product Name: {base_metadata['Product_Name']}")
|
| 494 |
+
description.append(f"Category: {base_metadata['Category']}")
|
| 495 |
+
description.append(f"Price: ${base_metadata['Selling_Price']:.2f}")
|
| 496 |
+
|
| 497 |
+
# Add key features from normalized description
|
| 498 |
+
if 'Normalized_Description' in base_metadata:
|
| 499 |
+
features = []
|
| 500 |
+
for feature in base_metadata['Normalized_Description'].split('|'):
|
| 501 |
+
if ':' in feature:
|
| 502 |
+
key, value = feature.split(':', 1)
|
| 503 |
+
if not any(skip in key.lower() for skip in
|
| 504 |
+
['uniq id', 'product url', 'specifications', 'asin']):
|
| 505 |
+
features.append(f"{key.strip()}: {value.strip()}")
|
| 506 |
+
if features:
|
| 507 |
+
description.append("Key Features:")
|
| 508 |
+
description.extend(features[:3])
|
| 509 |
+
|
| 510 |
+
# Add relevant keywords
|
| 511 |
+
if keywords:
|
| 512 |
+
description.append("Related Terms: " + ", ".join(list(keywords)[:5]))
|
| 513 |
+
|
| 514 |
+
return "\n".join(description)
|
| 515 |
+
|
| 516 |
+
return None
|
| 517 |
+
|
| 518 |
+
def retrieve_context(query, image=None, top_k=5):
|
| 519 |
+
"""Enhanced context retrieval using both FAISS and metadata"""
|
| 520 |
+
# Initialize context lists
|
| 521 |
+
similar_items = []
|
| 522 |
+
context = []
|
| 523 |
+
|
| 524 |
+
if image is not None:
|
| 525 |
+
# Process image query
|
| 526 |
+
image_embedding = process_image(image)
|
| 527 |
+
image_embedding = image_embedding.reshape(1, -1)
|
| 528 |
+
similar_items = image_faiss.search(image_embedding[0], k=top_k)
|
| 529 |
+
else:
|
| 530 |
+
# Process text query with enhanced metadata filtering
|
| 531 |
+
relevant_products = filter_by_metadata(query, metadata)
|
| 532 |
+
|
| 533 |
+
tokens = clip_tokenizer(query).to(device)
|
| 534 |
+
with torch.no_grad():
|
| 535 |
+
text_embedding = clip_model.encode_text(tokens)
|
| 536 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
| 537 |
+
text_embedding = text_embedding.cpu().numpy()
|
| 538 |
+
|
| 539 |
+
# Get FAISS results
|
| 540 |
+
similar_items = text_faiss.search(text_embedding[0], k=top_k*2) # Get more results for filtering
|
| 541 |
+
|
| 542 |
+
# Filter results using metadata if available
|
| 543 |
+
if relevant_products:
|
| 544 |
+
similar_items = [item for item in similar_items if item['id'] in relevant_products][:top_k]
|
| 545 |
+
|
| 546 |
+
# Build enhanced context
|
| 547 |
+
for item in similar_items:
|
| 548 |
+
product = product_df[product_df['Uniq Id'] == item['id']].iloc[0]
|
| 549 |
+
enhanced_context = enhance_context_with_metadata(product, metadata)
|
| 550 |
+
if enhanced_context:
|
| 551 |
+
context.append(enhanced_context)
|
| 552 |
+
|
| 553 |
+
return "\n\n".join(context), similar_items
|
| 554 |
+
|
| 555 |
+
def display_product_images(similar_items, max_images=1):
|
| 556 |
+
displayed_images = []
|
| 557 |
+
|
| 558 |
+
for item in similar_items[:max_images]:
|
| 559 |
+
try:
|
| 560 |
+
# Get image URL from product data
|
| 561 |
+
image_url = item['Image'] if isinstance(item, pd.Series) else item.get('Image')
|
| 562 |
+
if not image_url:
|
| 563 |
+
continue
|
| 564 |
+
|
| 565 |
+
# Handle multiple image URLs
|
| 566 |
+
image_urls = image_url.split('|')
|
| 567 |
+
image_url = image_urls[0] # Take first image
|
| 568 |
+
|
| 569 |
+
# Load image
|
| 570 |
+
response = requests.get(image_url)
|
| 571 |
+
img = Image.open(BytesIO(response.content))
|
| 572 |
+
|
| 573 |
+
# Get product details
|
| 574 |
+
product_name = item['Product Name'] if isinstance(item, pd.Series) else item.get('product_name')
|
| 575 |
+
price = item['Selling Price'] if isinstance(item, pd.Series) else item.get('price', 0)
|
| 576 |
+
|
| 577 |
+
# Add to displayed images
|
| 578 |
+
displayed_images.append({
|
| 579 |
+
'image': img,
|
| 580 |
+
'product_name': product_name,
|
| 581 |
+
'price': float(price)
|
| 582 |
+
})
|
| 583 |
+
|
| 584 |
+
except Exception as e:
|
| 585 |
+
print(f"Error processing item: {str(e)}")
|
| 586 |
+
continue
|
| 587 |
+
|
| 588 |
+
return displayed_images
|
| 589 |
+
|
| 590 |
+
def classify_query(query):
|
| 591 |
+
"""Classify the type of query to determine the retrieval strategy."""
|
| 592 |
+
query_lower = query.lower()
|
| 593 |
+
if any(keyword in query_lower for keyword in ['compare', 'difference between']):
|
| 594 |
+
return 'comparison'
|
| 595 |
+
elif any(keyword in query_lower for keyword in ['show', 'picture', 'image', 'photo']):
|
| 596 |
+
return 'image_search'
|
| 597 |
+
else:
|
| 598 |
+
return 'product_info'
|
| 599 |
+
|
| 600 |
+
def boost_category_relevance(query, product, similarity_score):
|
| 601 |
+
query_terms = set(query.lower().split())
|
| 602 |
+
category_terms = set(product['Category'].lower().split())
|
| 603 |
+
category_overlap = len(query_terms & category_terms)
|
| 604 |
+
category_boost = 1 + (category_overlap * 0.2) # 20% boost per matching term
|
| 605 |
+
return similarity_score * category_boost
|
| 606 |
+
|
| 607 |
+
def hybrid_retrieval(query, top_k=5):
|
| 608 |
+
query_type = classify_query(query)
|
| 609 |
+
|
| 610 |
+
tokens = clip_tokenizer(query).to(device)
|
| 611 |
+
with torch.no_grad():
|
| 612 |
+
text_embedding = clip_model.encode_text(tokens)
|
| 613 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
| 614 |
+
text_embedding = text_embedding.cpu().numpy()
|
| 615 |
+
|
| 616 |
+
# First get text matches
|
| 617 |
+
text_results = text_faiss.search(text_embedding[0], k=top_k*2)
|
| 618 |
+
|
| 619 |
+
if query_type == 'image_search':
|
| 620 |
+
image_results = []
|
| 621 |
+
for item in text_results:
|
| 622 |
+
# Get original product with embeddings intact
|
| 623 |
+
product = product_df[product_df['Uniq Id'] == item['id']].iloc[0]
|
| 624 |
+
# Get image embeddings from embeddings_df instead
|
| 625 |
+
image_embedding = embeddings_df[embeddings_df['Uniq_Id'] == item['id']]['image_embeddings'].iloc[0]
|
| 626 |
+
similarity = np.dot(text_embedding.flatten(), image_embedding.flatten())
|
| 627 |
+
boosted_similarity = boost_category_relevance(query, product, similarity)
|
| 628 |
+
image_results.append((product, boosted_similarity))
|
| 629 |
+
|
| 630 |
+
image_results.sort(key=lambda x: x[1], reverse=True)
|
| 631 |
+
results = [item for item, _ in image_results[:top_k]]
|
| 632 |
+
else:
|
| 633 |
+
results = [product_df[product_df['Uniq Id'] == item['id']].iloc[0] for item in text_results[:top_k]]
|
| 634 |
+
|
| 635 |
+
return results, query_type
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
def fallback_text_search(query, top_k=10):
|
| 639 |
+
relevant_products = filter_by_metadata(query, metadata)
|
| 640 |
+
if not relevant_products:
|
| 641 |
+
# Check brand index specifically
|
| 642 |
+
if 'brand_index' in metadata:
|
| 643 |
+
query_terms = query.lower().split()
|
| 644 |
+
for term in query_terms:
|
| 645 |
+
if term in metadata['brand_index']:
|
| 646 |
+
relevant_products = set(metadata['brand_index'][term])
|
| 647 |
+
break
|
| 648 |
+
|
| 649 |
+
if relevant_products:
|
| 650 |
+
results = [product_df[product_df['Uniq Id'] == pid].iloc[0] for pid in list(relevant_products)[:top_k]]
|
| 651 |
+
else:
|
| 652 |
+
query_lower = query.lower()
|
| 653 |
+
results = product_df[
|
| 654 |
+
(product_df['Product Name'].str.lower().str.contains(query_lower)) |
|
| 655 |
+
(product_df['Category'].str.lower().str.contains(query_lower)) |
|
| 656 |
+
(product_df['Normalized Description'].str.lower().str.contains(query_lower))
|
| 657 |
+
].head(top_k)
|
| 658 |
+
|
| 659 |
+
return results
|
| 660 |
+
|
| 661 |
+
def generate_rag_response(query, context, image=None):
|
| 662 |
+
"""Enhanced RAG response generation"""
|
| 663 |
+
# Select template based on query type and metadata
|
| 664 |
+
if "compare" in query.lower() or "difference between" in query.lower() or "vs." in query.lower():
|
| 665 |
+
template = get_few_shot_product_comparison_template()
|
| 666 |
+
elif image is not None:
|
| 667 |
+
template = get_zero_shot_image_template()
|
| 668 |
+
else:
|
| 669 |
+
template = get_zero_shot_product_template()
|
| 670 |
+
|
| 671 |
+
# Create enhanced prompt with metadata context
|
| 672 |
+
prompt = PromptTemplate(
|
| 673 |
+
template=template,
|
| 674 |
+
input_variables=["query", "context"]
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
# Configure generation parameters
|
| 678 |
+
pipe = pipeline(
|
| 679 |
+
"text-generation",
|
| 680 |
+
model=llm_model,
|
| 681 |
+
tokenizer=llm_tokenizer,
|
| 682 |
+
max_new_tokens=300,
|
| 683 |
+
temperature=0.1,
|
| 684 |
+
do_sample=False,
|
| 685 |
+
repetition_penalty=1.2,
|
| 686 |
+
early_stopping=True,
|
| 687 |
+
truncation=True,
|
| 688 |
+
padding=True
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
# Generate and clean response
|
| 692 |
+
formatted_prompt = prompt.format(query=query, context=context)
|
| 693 |
+
response = pipe(formatted_prompt)[0]['generated_text']
|
| 694 |
+
|
| 695 |
+
# Clean response
|
| 696 |
+
for section in ["Answer:", "Question:", "Guidelines:", "Context:"]:
|
| 697 |
+
if section in response:
|
| 698 |
+
response = response.split(section)[-1].strip()
|
| 699 |
+
|
| 700 |
+
return response
|
| 701 |
+
|
| 702 |
+
def chatbot(query, image_input=None):
|
| 703 |
+
"""
|
| 704 |
+
Main chatbot function to handle queries and provide responses.
|
| 705 |
+
"""
|
| 706 |
+
if image_input is not None:
|
| 707 |
+
try:
|
| 708 |
+
# Convert URL to image if needed
|
| 709 |
+
if isinstance(image_input, str):
|
| 710 |
+
image_input = load_image_from_url(image_input)
|
| 711 |
+
elif not isinstance(image_input, Image.Image):
|
| 712 |
+
raise ValueError("Invalid image input type")
|
| 713 |
+
|
| 714 |
+
# Get context and generate response
|
| 715 |
+
context, _ = retrieve_context(query, image_input)
|
| 716 |
+
if not context:
|
| 717 |
+
return "No relevant products found for this image."
|
| 718 |
+
response = generate_rag_response(query, context, image_input)
|
| 719 |
+
return response
|
| 720 |
+
|
| 721 |
+
except Exception as e:
|
| 722 |
+
print(f"Error processing image: {str(e)}")
|
| 723 |
+
return f"Failed to process image: {str(e)}"
|
| 724 |
+
else:
|
| 725 |
+
try:
|
| 726 |
+
print(f"Processing query: {query}")
|
| 727 |
+
if text_faiss is None or image_faiss is None:
|
| 728 |
+
return "Search indexes not initialized. Please try again."
|
| 729 |
+
|
| 730 |
+
results, query_type = hybrid_retrieval(query)
|
| 731 |
+
print(f"Query type: {query_type}")
|
| 732 |
+
|
| 733 |
+
if not results and query_type == 'image_search':
|
| 734 |
+
print("No relevant images found. Falling back to text search.")
|
| 735 |
+
results = fallback_text_search(query)
|
| 736 |
+
|
| 737 |
+
if not results:
|
| 738 |
+
return "No relevant products found."
|
| 739 |
+
|
| 740 |
+
context = "\n\n".join([enhance_context_with_metadata(item, metadata) for item in results])
|
| 741 |
+
response = generate_rag_response(query, context)
|
| 742 |
+
|
| 743 |
+
if query_type == 'image_search':
|
| 744 |
+
print("\nFound matching products:")
|
| 745 |
+
displayed_images = display_product_images(results)
|
| 746 |
+
|
| 747 |
+
# Always return a dictionary with both text and images for image search queries
|
| 748 |
+
return {
|
| 749 |
+
'text': response,
|
| 750 |
+
'images': displayed_images
|
| 751 |
+
}
|
| 752 |
+
|
| 753 |
+
return response
|
| 754 |
+
except Exception as e:
|
| 755 |
+
print(f"Error processing query: {str(e)}")
|
| 756 |
+
return f"Error processing request: {str(e)}"
|
| 757 |
+
|
| 758 |
+
|
| 759 |
+
def cleanup_resources():
|
| 760 |
+
if torch.cuda.is_available():
|
| 761 |
+
torch.cuda.empty_cache()
|
| 762 |
+
print("GPU memory cleared")
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.28.2
|
| 2 |
+
streamlit-chat==0.1.1
|
| 3 |
+
torch==2.1.1
|
| 4 |
+
transformers==4.35.2
|
| 5 |
+
open_clip_torch==2.23.0
|
| 6 |
+
pillow==10.1.0
|
| 7 |
+
pandas==2.1.3
|
| 8 |
+
numpy==1.26.2
|
| 9 |
+
faiss-cpu==1.7.4
|
| 10 |
+
huggingface_hub==0.19.4
|
| 11 |
+
langchain==0.0.339
|
| 12 |
+
requests==2.31.0
|
| 13 |
+
pyngrok==7.0.3
|
| 14 |
+
bitsandbytes==0.41.1
|