File size: 10,085 Bytes
e10c195
89628dd
 
 
 
e10c195
b5db033
 
e10c195
2021bac
b5db033
2021bac
b5db033
2021bac
 
 
 
 
 
ab95480
 
2021bac
 
ab95480
2021bac
 
ab95480
2021bac
 
 
b5db033
 
 
 
eb2ed76
 
f486321
 
 
 
 
 
2021bac
b5db033
2021bac
eb2ed76
b5db033
eb2ed76
 
 
9e21282
2021bac
 
 
b5db033
ab95480
2021bac
ab95480
b5db033
 
9e21282
2021bac
ab95480
2021bac
ab95480
 
2021bac
 
ab95480
b5db033
2021bac
b5db033
 
 
2021bac
d811871
b5db033
 
2021bac
 
 
 
 
9e21282
 
2021bac
b5db033
2021bac
f486321
2021bac
f486321
2021bac
ab95480
 
9e21282
2021bac
eb2ed76
2021bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb2ed76
2021bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb2ed76
2021bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb2ed76
 
2021bac
 
 
 
 
 
 
 
 
 
eb2ed76
2021bac
 
 
 
 
 
eb2ed76
2021bac
 
eb2ed76
 
 
2021bac
 
 
 
 
 
89628dd
2021bac
b5db033
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread

veri_model_path = "nyu-dice-lab/VeriThoughts-Reasoning-7B"
device = "cuda:0" if torch.cuda.is_available() else "cpu"

# Try loading the model with KV caching (no flash attention or quantization)
try:
    print("Loading tokenizer...")
    veri_tokenizer = AutoTokenizer.from_pretrained(veri_model_path)
    
    # Set pad token if not exists
    if veri_tokenizer.pad_token is None:
        veri_tokenizer.pad_token = veri_tokenizer.eos_token
    
    print("Loading model with KV caching...")
    veri_model = AutoModelForCausalLM.from_pretrained(
        veri_model_path, 
        device_map="auto" if torch.cuda.is_available() else None,
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        trust_remote_code=True,
        use_cache=True,  # Enable KV caching for faster generation
        low_cpu_mem_usage=True
    )
    
    print("Model loaded successfully with KV caching!")
    
except Exception as e:
    print(f"Model loading error: {e}")
    veri_model = None
    veri_tokenizer = None

@spaces.GPU(duration=60)
def truncate_at_code_end(text):
    """Truncate text at 'CODE END' to remove repetitive content"""
    if "CODE END" in text:
        end_index = text.find("CODE END") + len("CODE END")
        return text[:end_index].strip()
    return text.strip()

def generate_response(user_message, history):
    """Non-streaming generation for quick responses"""
    if not veri_model or not veri_tokenizer:
        return history + [["Error", "Model not loaded properly"]]
    
    if not user_message.strip():
        return history
    
    system_message = "You are VeriThoughts, a helpful assistant that thinks step by step to answer Verilog coding questions. Make sure your input and output interface has the same names as described in the question. Please start your Verilog code with CODE BEGIN and end with CODE END."
    
    # Create conversation history (limit to last 3 exchanges for memory efficiency)
    conversation = f"System: {system_message}\n"
    recent_history = history[-3:] if len(history) > 3 else history
    
    for h in recent_history:
        conversation += f"User: {h[0]}\nAssistant: {h[1]}\n"
    conversation += f"User: {user_message}\nAssistant:"
    
    # Tokenize input
    inputs = veri_tokenizer(
        conversation, 
        return_tensors="pt", 
        truncation=True, 
        max_length=4096,
        padding=True
    ).to(device)
    
    # Generate with KV caching
    with torch.no_grad():
        outputs = veri_model.generate(
            **inputs,
            max_new_tokens=1024,
            temperature=0.6,
            top_p=0.95,
            do_sample=True,
            pad_token_id=veri_tokenizer.pad_token_id,
            eos_token_id=veri_tokenizer.eos_token_id,
            use_cache=True,  # KV caching for speed
            repetition_penalty=1.1,
            early_stopping=True
        )
    
    # Decode response
    response = veri_tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
    
    # Truncate at CODE END to remove repetitive content
    response = truncate_at_code_end(response)
    
    # Clean up GPU memory
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    
    return history + [[user_message, response]]

@spaces.GPU(duration=120)
def generate_response_streaming(user_message, history):
    """Streaming generation for real-time response display"""
    if not veri_model or not veri_tokenizer:
        yield history + [["Error", "Model not loaded properly"]]
        return
    
    if not user_message.strip():
        yield history
        return
    
    system_message = "You are VeriThoughts, a helpful assistant that thinks step by step. You are finetuned from a Qwen model, created by Alibaba Cloud, to answer Verilog coding questions. Make sure your input and output interface has the same names as described in the question. Please start your Verilog code with CODE BEGIN and end with CODE END."
    
    # Create conversation history (limit for memory efficiency)
    conversation = f"System: {system_message}\n"
    recent_history = history[-3:] if len(history) > 3 else history
    
    for h in recent_history:
        conversation += f"User: {h[0]}\nAssistant: {h[1]}\n"
    conversation += f"User: {user_message}\nAssistant:"
    
    try:
        # Tokenize input
        inputs = veri_tokenizer(
            conversation, 
            return_tensors="pt", 
            truncation=True, 
            max_length=2048,
            padding=True
        ).to(device)
        
        # Setup streaming
        streamer = TextIteratorStreamer(
            veri_tokenizer, 
            skip_prompt=True, 
            skip_special_tokens=True,
            timeout=30.0
        )
        
        # Generation parameters with KV caching
        generation_kwargs = {
            **inputs,
            "max_new_tokens": 4096,
            "temperature": 0.6,
            "top_p": 0.95,
            "do_sample": True,
            "pad_token_id": veri_tokenizer.pad_token_id,
            "eos_token_id": veri_tokenizer.eos_token_id,
            "use_cache": True,  # KV caching for faster streaming
            "repetition_penalty": 1.1,
            "streamer": streamer,
            "early_stopping": True
        }
        
        # Start generation in a separate thread
        thread = Thread(target=veri_model.generate, kwargs=generation_kwargs)
        thread.start()
        
        # Stream the response token by token
        generated_text = ""
        new_history = history + [[user_message, ""]]
        code_end_reached = False
        
        for new_text in streamer:
            # Stop streaming if we've already reached CODE END
            if code_end_reached:
                break
                
            generated_text += new_text
            
            # Check if CODE END appears in the generated text
            if "CODE END" in generated_text:
                # Truncate at CODE END and mark as complete
                generated_text = truncate_at_code_end(generated_text)
                code_end_reached = True
            
            new_history[-1][1] = generated_text
            yield new_history
            
            # Break early if CODE END was reached
            if code_end_reached:
                break
        
        # Ensure the thread completes
        thread.join()
        
        # Final cleanup in case CODE END wasn't reached during streaming
        if not code_end_reached:
            final_text = truncate_at_code_end(generated_text)
            new_history[-1][1] = final_text
            yield new_history
        
    except Exception as e:
        print(f"Streaming error: {e}")
        error_history = history + [[user_message, f"Streaming error: {str(e)}"]]
        yield error_history
    
    finally:
        # Clean up GPU memory after generation
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

def clear_chat():
    """Clear chat and clean up memory"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    return []

# Create interface with soft theme
with gr.Blocks(title="VeriThoughts-7B Chatbot") as demo:
    gr.Markdown("# VeriThoughts-7B Chatbot")
    gr.Markdown("*Optimized with KV caching for faster generation*")
    
    with gr.Row():
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(
                value=[], 
                label="Chat", 
                height=600,
                show_label=False,
                container=True
            )
            
            with gr.Row():
                msg = gr.Textbox(
                    label="Your message", 
                    placeholder="Ask me about Verilog design, syntax, or implementation...",
                    lines=2,
                    max_lines=5,
                    scale=4
                )
                send_btn = gr.Button("Send", variant="primary", scale=1)
        
        with gr.Column(scale=1):
            with gr.Group():
                stream_btn = gr.Button("πŸ“‘ Send (Streaming)", variant="secondary", size="sm")
                clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", variant="secondary", size="sm")
            
            gr.Markdown(
                """
                ### πŸ’‘ Usage Tips
                
                **Send**: Quick response (max 1K tokens)
                **Streaming**: Real-time response (max 2K tokens)
                
                ### ⚑ Optimizations Active
                - **KV Caching**: Faster token generation
                - **Memory Management**: Auto cleanup
                - **Context Limiting**: Recent history only
                
                ### 🎯 Best Practices
                - Be specific about Verilog requirements
                - Mention input/output port names
                - Ask for step-by-step explanations
                - Clear chat periodically
                """
            )
    
    # Event handlers for regular send
    submit_event = msg.submit(
        fn=generate_response,
        inputs=[msg, chatbot],
        outputs=chatbot,
        show_progress=True
    ).then(
        lambda: "",
        inputs=None,
        outputs=msg
    )
    
    send_btn.click(
        fn=generate_response,
        inputs=[msg, chatbot],
        outputs=chatbot,
        show_progress=True
    ).then(
        lambda: "",
        inputs=None,
        outputs=msg
    )
    
    # Event handler for streaming
    stream_btn.click(
        fn=generate_response_streaming,
        inputs=[msg, chatbot],
        outputs=chatbot,
        show_progress=True
    ).then(
        lambda: "",
        inputs=None,
        outputs=msg
    )
    
    # Clear chat handler
    clear_btn.click(
        fn=clear_chat,
        inputs=None,
        outputs=chatbot
    )

# Launch the app
demo.launch(share=True)