Spaces:
Sleeping
Sleeping
Commit
·
f845b05
1
Parent(s):
b6be546
standard repo for pre.
Browse files- app.py +62 -190
- assets/Kickstarter_sentence_level_5000.csv +0 -0
- assets/Prediction.py.bak +0 -132
- convert.py +0 -30
app.py
CHANGED
@@ -3,19 +3,7 @@ import pandas as pd
|
|
3 |
from Prediction import *
|
4 |
import os
|
5 |
from datetime import datetime
|
6 |
-
import re
|
7 |
-
import json
|
8 |
-
import hashlib
|
9 |
|
10 |
-
persistent_path = "/output"
|
11 |
-
# os.environ['HF_HOME'] = os.path.join(persistent_path, ".huggingface")
|
12 |
-
user_input_path = os.path.join(persistent_path, 'user.jsonl')
|
13 |
-
secret = "2fc9ff032e027e8f23bb9fb693234899"
|
14 |
-
|
15 |
-
def get_md5(s):
|
16 |
-
md = hashlib.md5()
|
17 |
-
md.update(s.encode('utf-8'))
|
18 |
-
return md.hexdigest()
|
19 |
|
20 |
examples = []
|
21 |
if os.path.exists("assets/examples.txt"):
|
@@ -53,72 +41,6 @@ def csv_process(csv_file, attr="content"):
|
|
53 |
outputs.append(output_path)
|
54 |
return outputs
|
55 |
|
56 |
-
def logfile_query(auth):
|
57 |
-
if get_md5(auth) == secret and os.path.exists(user_input_path):
|
58 |
-
return [user_input_path]
|
59 |
-
else:
|
60 |
-
return None
|
61 |
-
|
62 |
-
|
63 |
-
def check_save(fname, lname, cnum, email, oname, position):
|
64 |
-
errors = []
|
65 |
-
valid_vars = {}
|
66 |
-
|
67 |
-
if not fname.strip() or not lname.strip():
|
68 |
-
errors.append("Name cannot be empty")
|
69 |
-
elif fname.isdigit() or lname.isdigit():
|
70 |
-
errors.append("Name cannot be purely numerical")
|
71 |
-
else:
|
72 |
-
valid_vars["fname"] = fname
|
73 |
-
valid_vars["lname"] = lname
|
74 |
-
|
75 |
-
valid_vars["cnum"] = ''
|
76 |
-
if cnum:
|
77 |
-
if not cnum.isdigit():
|
78 |
-
errors.append("The phone number must be a pure number")
|
79 |
-
else:
|
80 |
-
valid_vars["cnum"] = cnum
|
81 |
-
|
82 |
-
if not email.strip():
|
83 |
-
errors.append("Email cannot be empty")
|
84 |
-
elif not re.match(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$', email):
|
85 |
-
errors.append("Incorrect email format")
|
86 |
-
else:
|
87 |
-
valid_vars["email"] = email
|
88 |
-
|
89 |
-
if not oname.strip():
|
90 |
-
errors.append("Organization name cannot be empty")
|
91 |
-
elif oname.isdigit():
|
92 |
-
errors.append("Organization cannot be purely numerical")
|
93 |
-
else:
|
94 |
-
valid_vars["oname"] = oname
|
95 |
-
|
96 |
-
valid_vars["position"] = ''
|
97 |
-
if position:
|
98 |
-
if position.isdigit():
|
99 |
-
errors.append("Position in your company cannot be purely numerical")
|
100 |
-
else:
|
101 |
-
valid_vars["position"] = position
|
102 |
-
|
103 |
-
if errors:
|
104 |
-
return errors
|
105 |
-
|
106 |
-
current_time = datetime.now()
|
107 |
-
formatted_time = current_time.strftime("%Y_%m_%d_%H_%M_%S")
|
108 |
-
valid_vars['time'] = formatted_time
|
109 |
-
|
110 |
-
with open(user_input_path, 'a+', encoding="utf8") as file:
|
111 |
-
file.write(json.dumps(valid_vars)+"\n")
|
112 |
-
|
113 |
-
records = {}
|
114 |
-
with open(user_input_path, 'r', encoding="utf8") as file:
|
115 |
-
for line in file:
|
116 |
-
line = line.strip()
|
117 |
-
dct = json.loads(line)
|
118 |
-
records[dct['time']] = dct
|
119 |
-
|
120 |
-
return records
|
121 |
-
|
122 |
|
123 |
my_theme = gr.Theme.from_hub("JohnSmith9982/small_and_pretty")
|
124 |
with gr.Blocks(theme=my_theme, title='Brand_Tone_of_Voice_demo') as demo:
|
@@ -138,116 +60,66 @@ with gr.Blocks(theme=my_theme, title='Brand_Tone_of_Voice_demo') as demo:
|
|
138 |
</div>
|
139 |
</div>
|
140 |
""")
|
141 |
-
|
142 |
-
with gr.
|
143 |
-
gr.Markdown("
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
gr.
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
gr.
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
# Paper Name
|
204 |
-
|
205 |
-
# Authors
|
206 |
-
|
207 |
-
+ First author
|
208 |
-
+ Corresponding author
|
209 |
-
|
210 |
-
# Detailed Information
|
211 |
-
|
212 |
-
...
|
213 |
-
"""
|
214 |
-
)
|
215 |
-
|
216 |
-
with gr.Tab("Log File"):
|
217 |
-
with gr.Row():
|
218 |
-
auth_token = gr.Textbox(label="Authentication Tokens: ", info="Enter the key to download persistent stored log information.")
|
219 |
-
log_output = gr.File(label="Log file: ")
|
220 |
-
|
221 |
-
with gr.Row():
|
222 |
-
button_lf = gr.Button("Validate", variant="primary")
|
223 |
-
button_lf.click(fn=logfile_query, inputs=[auth_token], outputs=[log_output])
|
224 |
-
gr.ClearButton([auth_token, log_output])
|
225 |
-
|
226 |
-
|
227 |
-
def submit(*user_input):
|
228 |
-
res = check_save(*user_input)
|
229 |
-
if isinstance(res, list):
|
230 |
-
return {
|
231 |
-
error_box: gr.HTML(
|
232 |
-
value=f"""
|
233 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
234 |
-
<div>
|
235 |
-
<p style="color:red;">{"; ".join(res)}</p>
|
236 |
-
</div>
|
237 |
-
</div>
|
238 |
-
""",
|
239 |
-
visible=True)
|
240 |
-
}
|
241 |
-
else:
|
242 |
-
return {
|
243 |
-
mainrow: gr.Row(visible=True),
|
244 |
-
regis: gr.Row(visible=False),
|
245 |
-
error_box: gr.HTML(visible=False)
|
246 |
-
}
|
247 |
-
|
248 |
-
submit_btn.click(
|
249 |
-
submit,
|
250 |
-
[fname_tb, lname_tb, cnum_tb, email_tb, oname_tb, position_tb],
|
251 |
-
[mainrow, regis, error_box],
|
252 |
-
)
|
253 |
demo.launch()
|
|
|
3 |
from Prediction import *
|
4 |
import os
|
5 |
from datetime import datetime
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
examples = []
|
9 |
if os.path.exists("assets/examples.txt"):
|
|
|
41 |
outputs.append(output_path)
|
42 |
return outputs
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
my_theme = gr.Theme.from_hub("JohnSmith9982/small_and_pretty")
|
46 |
with gr.Blocks(theme=my_theme, title='Brand_Tone_of_Voice_demo') as demo:
|
|
|
60 |
</div>
|
61 |
</div>
|
62 |
""")
|
63 |
+
|
64 |
+
with gr.Tab("Readme"):
|
65 |
+
gr.Markdown("""
|
66 |
+
# Detailed information about our model:
|
67 |
+
|
68 |
+
The example model here is a tone classification model suitable for financial field texts.
|
69 |
+
|
70 |
+
# Paper Name
|
71 |
+
|
72 |
+
# Authors
|
73 |
+
|
74 |
+
+ First author
|
75 |
+
+ Corresponding author
|
76 |
+
|
77 |
+
# How to use?
|
78 |
+
|
79 |
+
Please refer to the other two tab card for predictions.
|
80 |
+
|
81 |
+
+ The `Single Sentence` for the tone classification of individual sentence.
|
82 |
+
+ The `CSV File` for inputting CSV file for batch prediction and return.
|
83 |
+
...
|
84 |
+
""")
|
85 |
+
|
86 |
+
with gr.Tab("Single Sentence"):
|
87 |
+
tbox_input = gr.Textbox(label="Input",
|
88 |
+
info="Please input a sentence here:")
|
89 |
+
|
90 |
+
tab_output = gr.DataFrame(label='Predictions:',
|
91 |
+
headers=["Category", "Probability"],
|
92 |
+
datatype=["str", "number"],
|
93 |
+
interactive=False)
|
94 |
+
with gr.Row():
|
95 |
+
button_ss = gr.Button("Submit", variant="primary")
|
96 |
+
button_ss.click(fn=single_sentence, inputs=[tbox_input], outputs=[tab_output])
|
97 |
+
gr.ClearButton([tbox_input, tab_output])
|
98 |
+
|
99 |
+
gr.Examples(
|
100 |
+
examples=examples,
|
101 |
+
inputs=tbox_input,
|
102 |
+
examples_per_page=len(examples)
|
103 |
+
)
|
104 |
+
|
105 |
+
with gr.Tab("Csv File"):
|
106 |
+
with gr.Row():
|
107 |
+
csv_input = gr.File(label="CSV File:",
|
108 |
+
file_types=['.csv'],
|
109 |
+
file_count="single"
|
110 |
+
)
|
111 |
+
csv_output = gr.File(label="Predictions:")
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
button = gr.Button("Submit", variant="primary")
|
115 |
+
button.click(fn=csv_process, inputs=[csv_input], outputs=[csv_output])
|
116 |
+
gr.ClearButton([csv_input, csv_output])
|
117 |
+
|
118 |
+
gr.Markdown("## Examples \n The incoming CSV must include the ``content`` field, which represents the text that needs to be predicted!")
|
119 |
+
gr.DataFrame(label='Csv input format:',
|
120 |
+
value=[[i, examples[i]] for i in range(len(examples))],
|
121 |
+
headers=["index", "content"],
|
122 |
+
datatype=["number","str"],
|
123 |
+
interactive=False
|
124 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
demo.launch()
|
assets/Kickstarter_sentence_level_5000.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
assets/Prediction.py.bak
DELETED
@@ -1,132 +0,0 @@
|
|
1 |
-
### install the needed package
|
2 |
-
# !pip install transformers
|
3 |
-
# !pip install torchmetrics
|
4 |
-
# !pip3 install ogb pytorch_lightning -q
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
import pandas as pd
|
9 |
-
from tqdm.auto import tqdm
|
10 |
-
import torch
|
11 |
-
import torch.nn as nn
|
12 |
-
from torch.utils.data import DataLoader, Dataset
|
13 |
-
from transformers import BertTokenizerFast as BertTokenizer, BertModel, AdamW, get_linear_schedule_with_warmup
|
14 |
-
# import pytorch_lightning as pl
|
15 |
-
|
16 |
-
pd.set_option('display.max_columns', 500)
|
17 |
-
|
18 |
-
RANDOM_SEED = 42
|
19 |
-
|
20 |
-
|
21 |
-
class ModelTagger(nn.Module):
|
22 |
-
def __init__(self, model_path="bert-base-uncased"):
|
23 |
-
super().__init__()
|
24 |
-
|
25 |
-
self.bert = BertModel.from_pretrained(model_path, return_dict=True)
|
26 |
-
self.classifier = nn.Linear(self.bert.config.hidden_size, 4)
|
27 |
-
self.criterion = nn.BCELoss()
|
28 |
-
|
29 |
-
|
30 |
-
def forward(self, input_ids, attention_mask, labels=None):
|
31 |
-
|
32 |
-
output = self.bert(input_ids, attention_mask=attention_mask)
|
33 |
-
output = self.classifier(output.pooler_output)
|
34 |
-
output = torch.sigmoid(output)
|
35 |
-
loss = 0
|
36 |
-
|
37 |
-
if labels is not None:
|
38 |
-
loss = self.criterion(output, labels)
|
39 |
-
return loss, output
|
40 |
-
|
41 |
-
|
42 |
-
class Predict_Dataset(Dataset):
|
43 |
-
def __init__(
|
44 |
-
self,
|
45 |
-
data: pd.DataFrame,
|
46 |
-
text_col: str,
|
47 |
-
tokenizer: BertTokenizer,
|
48 |
-
max_token_len: int = 128
|
49 |
-
):
|
50 |
-
self.text_col = text_col
|
51 |
-
self.tokenizer = tokenizer
|
52 |
-
self.data = data
|
53 |
-
self.max_token_len = max_token_len
|
54 |
-
|
55 |
-
def __len__(self):
|
56 |
-
return len(self.data)
|
57 |
-
|
58 |
-
|
59 |
-
def __getitem__(self, index: int):
|
60 |
-
data_row = self.data.iloc[index]
|
61 |
-
post = data_row[self.text_col]
|
62 |
-
encoding = self.tokenizer.encode_plus(
|
63 |
-
post,
|
64 |
-
add_special_tokens=True,
|
65 |
-
max_length=self.max_token_len,
|
66 |
-
return_token_type_ids=False,
|
67 |
-
padding="max_length",
|
68 |
-
truncation=True,
|
69 |
-
return_attention_mask=True,
|
70 |
-
return_tensors='pt',
|
71 |
-
)
|
72 |
-
return dict(
|
73 |
-
post=post,
|
74 |
-
input_ids=encoding["input_ids"].flatten(),
|
75 |
-
attention_mask=encoding["attention_mask"].flatten(),
|
76 |
-
)
|
77 |
-
|
78 |
-
|
79 |
-
def predict(data, text_col, tokenizer, model, device, LABEL_COLUMNS, max_token_len=128):
|
80 |
-
predictions = []
|
81 |
-
|
82 |
-
df_token = Predict_Dataset(data, text_col, tokenizer, max_token_len=max_token_len)
|
83 |
-
loader = DataLoader(df_token, batch_size=1000, num_workers=0)
|
84 |
-
|
85 |
-
for item in tqdm(loader):
|
86 |
-
_, prediction = model(
|
87 |
-
item["input_ids"].to(device),
|
88 |
-
item["attention_mask"].to(device)
|
89 |
-
)
|
90 |
-
predictions.append(prediction.detach().cpu())
|
91 |
-
|
92 |
-
final_pred = torch.cat(predictions, dim=0)
|
93 |
-
y_inten = final_pred.numpy().T
|
94 |
-
|
95 |
-
return {
|
96 |
-
LABEL_COLUMNS[0]: y_inten[0].tolist(),
|
97 |
-
LABEL_COLUMNS[1]: y_inten[1].tolist(),
|
98 |
-
LABEL_COLUMNS[2]: y_inten[2].tolist(),
|
99 |
-
LABEL_COLUMNS[3]: y_inten[3].tolist()
|
100 |
-
}
|
101 |
-
|
102 |
-
|
103 |
-
def get_result(df, result, LABEL_COLUMNS):
|
104 |
-
df[LABEL_COLUMNS[0]] = result[LABEL_COLUMNS[0]]
|
105 |
-
df[LABEL_COLUMNS[1]] = result[LABEL_COLUMNS[1]]
|
106 |
-
df[LABEL_COLUMNS[2]] = result[LABEL_COLUMNS[2]]
|
107 |
-
df[LABEL_COLUMNS[3]] = result[LABEL_COLUMNS[3]]
|
108 |
-
return df
|
109 |
-
|
110 |
-
|
111 |
-
Data = pd.read_csv("Kickstarter_sentence_level_5000.csv")
|
112 |
-
Data = Data[:20]
|
113 |
-
device = torch.device('cpu')
|
114 |
-
BERT_MODEL_NAME = 'bert-base-uncased'
|
115 |
-
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
|
116 |
-
LABEL_COLUMNS = ["Assertive Tone", "Conversational Tone", "Emotional Tone", "Informative Tone"]
|
117 |
-
|
118 |
-
params = torch.load("checkpoints/Kickstarter.ckpt", map_location='cpu')['state_dict']
|
119 |
-
kick_model = ModelTagger()
|
120 |
-
kick_model.load_state_dict(params, strict=True)
|
121 |
-
kick_model.eval()
|
122 |
-
|
123 |
-
kick_model = kick_model.to(device)
|
124 |
-
|
125 |
-
kick_fk_doc_result = predict(Data,"content", tokenizer,kick_model, device, LABEL_COLUMNS)
|
126 |
-
|
127 |
-
fk_result = get_result(Data, kick_fk_doc_result, LABEL_COLUMNS)
|
128 |
-
|
129 |
-
fk_result.to_csv("output/prediction_origin_Kickstarter.csv")
|
130 |
-
|
131 |
-
|
132 |
-
# tab_output = gr.Label(label='Probability Predictions:', value=dict(zip(LABEL_COLUMNS, [0]*len(LABEL_COLUMNS))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
convert.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import glob
|
3 |
-
import os
|
4 |
-
from transformers import BertTokenizerFast as BertTokenizer, BertForSequenceClassification
|
5 |
-
|
6 |
-
os.environ['https_proxy'] = "127.0.0.1:1081"
|
7 |
-
|
8 |
-
LABEL_COLUMNS = ["Assertive Tone", "Conversational Tone", "Emotional Tone", "Informative Tone", "None"]
|
9 |
-
|
10 |
-
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
11 |
-
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=5)
|
12 |
-
id2label = {i:label for i,label in enumerate(LABEL_COLUMNS)}
|
13 |
-
label2id = {label:i for i,label in enumerate(LABEL_COLUMNS)}
|
14 |
-
|
15 |
-
for ckpt in glob.glob('checkpoints/*.ckpt'):
|
16 |
-
base_name = os.path.basename(ckpt)
|
17 |
-
# 去除文件后缀
|
18 |
-
model_name = os.path.splitext(base_name)[0]
|
19 |
-
params = torch.load(ckpt, map_location="cpu")['state_dict']
|
20 |
-
msg = model.load_state_dict(params, strict=True)
|
21 |
-
path = f'models/{model_name}'
|
22 |
-
os.makedirs(path, exist_ok=True)
|
23 |
-
|
24 |
-
torch.save(model.state_dict(), f'{path}/pytorch_model.bin')
|
25 |
-
config = model.config
|
26 |
-
config.architectures = ['BertForSequenceClassification']
|
27 |
-
config.label2id = label2id
|
28 |
-
config.id2label = id2label
|
29 |
-
model.config.to_json_file(f'{path}/config.json')
|
30 |
-
tokenizer.save_vocabulary(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|