- app.py +27 -41
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,74 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
-
from datasets import Dataset
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
4 |
import pandas as pd
|
5 |
-
from
|
|
|
6 |
import torch
|
7 |
|
|
|
|
|
|
|
8 |
def train_model(file, hf_token):
|
9 |
try:
|
10 |
-
#
|
11 |
-
if not hf_token:
|
12 |
-
return "Please provide a Hugging Face token"
|
13 |
-
login(hf_token)
|
14 |
-
|
15 |
-
# Load and prepare data
|
16 |
df = pd.read_csv(file.name)
|
17 |
-
|
18 |
|
19 |
-
#
|
20 |
model_name = "facebook/opt-125m"
|
21 |
-
device_map = "cpu" # Force CPU usage
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
24 |
-
model_name,
|
25 |
-
device_map=
|
26 |
-
|
27 |
)
|
|
|
28 |
|
29 |
-
#
|
30 |
-
|
|
|
|
|
31 |
output_dir="./results",
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
push_to_hub=True,
|
37 |
-
hub_token=hf_token,
|
38 |
-
no_cuda=True, # Force CPU usage
|
39 |
-
report_to="none" # Disable wandb logging
|
40 |
)
|
41 |
|
42 |
-
# Initialize trainer
|
43 |
trainer = Trainer(
|
44 |
model=model,
|
45 |
-
args=
|
46 |
train_dataset=dataset,
|
47 |
tokenizer=tokenizer
|
48 |
)
|
49 |
|
50 |
-
|
51 |
-
trainer.train()
|
52 |
-
|
53 |
-
# Push to hub
|
54 |
-
model.push_to_hub(f"cheberle/product-classifier-{pd.Timestamp.now().strftime('%Y%m%d')}")
|
55 |
-
|
56 |
-
return "Training completed successfully!"
|
57 |
|
58 |
except Exception as e:
|
59 |
-
return f"Error
|
60 |
|
61 |
-
# Create Gradio interface
|
62 |
demo = gr.Interface(
|
63 |
fn=train_model,
|
64 |
inputs=[
|
65 |
-
gr.File(label="Upload
|
66 |
-
gr.Textbox(label="
|
67 |
],
|
68 |
outputs="text",
|
69 |
-
title="Product Classifier Training",
|
70 |
-
description="Upload your CSV data to train a product classifier model on CPU."
|
71 |
)
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import pandas as pd
|
3 |
+
from datasets import Dataset
|
4 |
+
from transformers import AutoTokenizer, TrainingArguments, Trainer, AutoModelForCausalLM
|
5 |
import torch
|
6 |
|
7 |
+
print("CUDA available:", torch.cuda.is_available())
|
8 |
+
print("Device:", torch.device('cpu'))
|
9 |
+
|
10 |
def train_model(file, hf_token):
|
11 |
try:
|
12 |
+
# Basic data loading test
|
|
|
|
|
|
|
|
|
|
|
13 |
df = pd.read_csv(file.name)
|
14 |
+
print(f"Loaded CSV with {len(df)} rows")
|
15 |
|
16 |
+
# Load tokenizer and model
|
17 |
model_name = "facebook/opt-125m"
|
|
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
model_name,
|
21 |
+
device_map=None, # Force simple device mapping
|
22 |
+
low_cpu_mem_usage=True
|
23 |
)
|
24 |
+
model = model.to('cpu') # Explicitly move to CPU
|
25 |
|
26 |
+
# Basic dataset creation
|
27 |
+
dataset = Dataset.from_pandas(df)
|
28 |
+
|
29 |
+
args = TrainingArguments(
|
30 |
output_dir="./results",
|
31 |
+
per_device_train_batch_size=1,
|
32 |
+
num_train_epochs=1,
|
33 |
+
no_cuda=True,
|
34 |
+
local_rank=-1
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
|
|
|
37 |
trainer = Trainer(
|
38 |
model=model,
|
39 |
+
args=args,
|
40 |
train_dataset=dataset,
|
41 |
tokenizer=tokenizer
|
42 |
)
|
43 |
|
44 |
+
return f"Setup successful! Loaded {len(df)} rows"
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
except Exception as e:
|
47 |
+
return f"Error: {str(e)}\nType: {type(e)}"
|
48 |
|
|
|
49 |
demo = gr.Interface(
|
50 |
fn=train_model,
|
51 |
inputs=[
|
52 |
+
gr.File(label="Upload CSV file"),
|
53 |
+
gr.Textbox(label="HF Token", type="password")
|
54 |
],
|
55 |
outputs="text",
|
56 |
+
title="Product Classifier Training (CPU)",
|
|
|
57 |
)
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
+
demo.launch(debug=True) # Enable debug mode
|
requirements.txt
CHANGED
@@ -3,3 +3,4 @@ transformers==4.37.2
|
|
3 |
torch==2.1.2
|
4 |
datasets==2.16.1
|
5 |
pandas==2.2.0
|
|
|
|
3 |
torch==2.1.2
|
4 |
datasets==2.16.1
|
5 |
pandas==2.2.0
|
6 |
+
huggingface-hub==0.27.0
|