test
Browse files- app.py +64 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from datasets import Dataset
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from huggingface_hub import login
|
| 7 |
+
|
| 8 |
+
def train_model(file, hf_token):
|
| 9 |
+
try:
|
| 10 |
+
# Login to Hugging Face
|
| 11 |
+
if not hf_token:
|
| 12 |
+
return "Please provide a Hugging Face token"
|
| 13 |
+
login(hf_token)
|
| 14 |
+
|
| 15 |
+
# Load and prepare data
|
| 16 |
+
df = pd.read_csv(file.name)
|
| 17 |
+
dataset = Dataset.from_pandas(df)
|
| 18 |
+
|
| 19 |
+
# Model setup
|
| 20 |
+
model_name = "facebook/opt-125m"
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 23 |
+
|
| 24 |
+
# Training configuration
|
| 25 |
+
training_args = TrainingArguments(
|
| 26 |
+
output_dir="./results",
|
| 27 |
+
num_train_epochs=3,
|
| 28 |
+
per_device_train_batch_size=2,
|
| 29 |
+
learning_rate=3e-5,
|
| 30 |
+
save_strategy="epoch",
|
| 31 |
+
push_to_hub=True,
|
| 32 |
+
hub_token=hf_token
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Initialize trainer
|
| 36 |
+
trainer = Trainer(
|
| 37 |
+
model=model,
|
| 38 |
+
args=training_args,
|
| 39 |
+
train_dataset=dataset,
|
| 40 |
+
tokenizer=tokenizer
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Run training
|
| 44 |
+
trainer.train()
|
| 45 |
+
|
| 46 |
+
return "Training completed successfully!"
|
| 47 |
+
|
| 48 |
+
except Exception as e:
|
| 49 |
+
return f"Error occurred: {str(e)}"
|
| 50 |
+
|
| 51 |
+
# Create Gradio interface
|
| 52 |
+
demo = gr.Interface(
|
| 53 |
+
fn=train_model,
|
| 54 |
+
inputs=[
|
| 55 |
+
gr.File(label="Upload your CSV file"),
|
| 56 |
+
gr.Textbox(label="Hugging Face Token", type="password")
|
| 57 |
+
],
|
| 58 |
+
outputs="text",
|
| 59 |
+
title="Product Classifier Training",
|
| 60 |
+
description="Upload your CSV data to train a product classifier model."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
if __name__ == "__main__":
|
| 64 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.19.2
|
| 2 |
+
transformers==4.37.2
|
| 3 |
+
torch==2.1.2
|
| 4 |
+
datasets==2.16.1
|
| 5 |
+
pandas==2.2.0
|