File size: 1,392 Bytes
dc47816
b0e39c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc47816
 
b0e39c2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

# Model and tokenizer loading
model_id = "cheberle/autotrain-35swc-b4r9z"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)

# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)

def predict(text):
    # Tokenize input
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
    
    # Move inputs to same device as model
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    # Get prediction
    with torch.no_grad():
        outputs = model(**inputs)
        predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    
    # Get prediction probabilities and labels
    probs = predictions[0].tolist()
    labels = model.config.id2label
    
    # Create formatted output
    results = {labels[i]: float(probs[i]) for i in range(len(probs))}
    
    return results

# Create Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Textbox(label="Input Text"),
    outputs=gr.Label(label="Prediction"),
    title="Model Prediction Interface",
    description=f"Enter text to get predictions from {model_id}",
    examples=["Example text to try"]
)

# Launch the interface
iface.launch()