File size: 3,096 Bytes
b0e6d60
4460d3d
 
b0e39c2
4460d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e39c2
4460d3d
 
 
 
 
 
 
 
 
dc47816
 
4460d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# ---------------------------------------------------------------------------
# 1) Load the model and tokenizer
# ---------------------------------------------------------------------------
# If you want to load in 8-bit or 4-bit precision with bitsandbytes, 
# uncomment and install bitsandbytes, and set load_in_8bit=True or load_in_4bit=True.
# For example:
#
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
# bnb_config = BitsAndBytesConfig(
#     load_in_4bit=True,    # or load_in_8bit=True
#     bnb_4bit_compute_dtype=torch.float16,  # recommended compute dtype
#     bnb_4bit_use_double_quant=True,        # optional
#     bnb_4bit_quant_type='nf4',             # optional
# )
#
# model = AutoModelForCausalLM.from_pretrained(
#     "cheberle/autotrain-35swc-b4r9z",
#     quantization_config=bnb_config,
#     device_map="auto",
#     trust_remote_code=True
# )
# tokenizer = AutoTokenizer.from_pretrained("cheberle/autotrain-35swc-b4r9z", trust_remote_code=True)

# For a standard FP16 or FP32 load (no bitsandbytes):
model = AutoModelForCausalLM.from_pretrained(
    "cheberle/autotrain-35swc-b4r9z",
    torch_dtype=torch.float16,    # Or "auto", or float32
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
    "cheberle/autotrain-35swc-b4r9z",
    trust_remote_code=True
)

# ---------------------------------------------------------------------------
# 2) Define a text generation function
# ---------------------------------------------------------------------------
def generate_text(prompt):
    # Tokenize input
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    # Generate output (configure generation args as needed)
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=128,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )

    # Decode
    decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return decoded

# ---------------------------------------------------------------------------
# 3) Create the Gradio interface
# ---------------------------------------------------------------------------
with gr.Blocks() as demo:
    gr.Markdown("<h3>Demo: cheberle/autotrain-35swc-b4r9z</h3>")
    
    with gr.Row():
        with gr.Column():
            prompt_in = gr.Textbox(
                lines=5, 
                label="Enter your prompt",
                placeholder="Ask something here..."
            )
            submit_btn = gr.Button("Generate")
        with gr.Column():
            output_box = gr.Textbox(lines=15, label="Model Output")

    # Define what happens on button click
    submit_btn.click(fn=generate_text, inputs=prompt_in, outputs=output_box)

# ---------------------------------------------------------------------------
# 4) Launch!
# ---------------------------------------------------------------------------
if __name__ == "__main__":
    demo.launch()