File size: 1,938 Bytes
b0e6d60
4460d3d
553c8c4
 
c60d44f
553c8c4
 
 
b0e39c2
553c8c4
 
 
b0e39c2
553c8c4
 
29eca75
 
 
 
 
 
 
553c8c4
 
29eca75
 
 
 
 
dc47816
c60d44f
 
553c8c4
 
 
c60d44f
553c8c4
 
 
 
 
 
4460d3d
 
553c8c4
 
 
c60d44f
 
553c8c4
4460d3d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

# Repos
BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
ADAPTER_REPO = "cheberle/autotrain-35swc-b4r9z"

# 1. Load the PEFT config to confirm the base model
peft_config = PeftConfig.from_pretrained(ADAPTER_REPO)
print("PEFT Base Model:", peft_config.base_model_name_or_path)

# 2. Load the tokenizer & base model
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL,
    revision="4831ee1375be5b4ff5a4abf7984e13628db44e35",
    ignore_mismatched_sizes=True,
    trust_remote_code=True,
    device_map="auto",
)

# 3. Load your LoRA adapter weights onto the base model
model = PeftModel.from_pretrained(
    base_model,
    ADAPTER_REPO,
    ignore_mismatched_sizes=True,  # Add this parameter
)

def classify_text(text):
    """
    Simple prompting approach: we ask the model to return a single classification label 
    (e.g., 'positive', 'negative', etc.).
    You can refine this prompt, add chain-of-thought, or multiple classes as needed.
    """
    prompt = f"Below is some text.\nText: {text}\nPlease classify the sentiment (positive or negative):"
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    with torch.no_grad():
        outputs = model.generate(**inputs, max_new_tokens=64)
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return answer

with gr.Blocks() as demo:
    gr.Markdown("## Qwen + LoRA Adapter: Text Classification Demo")
    input_box = gr.Textbox(lines=3, label="Enter text")
    output_box = gr.Textbox(lines=3, label="Model's generated output (classification)")

    classify_btn = gr.Button("Classify")
    classify_btn.click(fn=classify_text, inputs=input_box, outputs=output_box)

if __name__ == "__main__":
    demo.launch()