Upload 2 files
Browse files- app.py +33 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# Create a sentiment analysis pipeline
|
7 |
+
sentiment_analysis = pipeline("sentiment-analysis", model="chayanee/Detected_img")
|
8 |
+
|
9 |
+
# Set the title for your Streamlit app
|
10 |
+
st.title("NLP and Image Analysis")
|
11 |
+
|
12 |
+
# Text Input Widget
|
13 |
+
text_input = st.text_area("Enter some text for sentiment analysis:")
|
14 |
+
|
15 |
+
# Image Upload Widget
|
16 |
+
uploaded_image = st.file_uploader("Upload an image for analysis", type=["jpg", "jpeg", "png"])
|
17 |
+
|
18 |
+
# Perform sentiment analysis when the user clicks a button
|
19 |
+
if st.button("Analyze"):
|
20 |
+
# Perform sentiment analysis on the text
|
21 |
+
if text_input:
|
22 |
+
sentiment_result = sentiment_analysis(text_input)
|
23 |
+
st.write("Sentiment Analysis Result:")
|
24 |
+
st.write(sentiment_result)
|
25 |
+
|
26 |
+
# Analyze the uploaded image if available
|
27 |
+
if uploaded_image:
|
28 |
+
# Display the uploaded image
|
29 |
+
image = Image.open(uploaded_image)
|
30 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
altair<5
|