Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
from threading import Thread
|
| 4 |
+
|
| 5 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
| 6 |
+
from transformers import TextIteratorStreamer
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from peft import PeftModel
|
| 9 |
+
import requests
|
| 10 |
+
import torch, os, re, json
|
| 11 |
+
import time
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
base_model = "llava-hf/llava-v1.6-mistral-7b-hf"
|
| 15 |
+
finetune_repo = "erwannd/llava-v1.6-mistral-7b-finetune-combined4k"
|
| 16 |
+
|
| 17 |
+
processor = LlavaNextProcessor.from_pretrained(base_model)
|
| 18 |
+
|
| 19 |
+
model = LlavaNextForConditionalGeneration.from_pretrained(
|
| 20 |
+
base_model,
|
| 21 |
+
torch_dtype=torch.float16,
|
| 22 |
+
low_cpu_mem_usage=True,
|
| 23 |
+
)
|
| 24 |
+
model = PeftModel.from_pretrained(model, finetune_repo)
|
| 25 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
model.to("cuda:0")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@spaces.GPU
|
| 30 |
+
def predict(image, input_text):
|
| 31 |
+
image = image.convert("RGB")
|
| 32 |
+
prompt = f"[INST] <image>\n{input_text} [/INST]"
|
| 33 |
+
|
| 34 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(0, torch.float16)
|
| 35 |
+
|
| 36 |
+
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
|
| 37 |
+
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=200, do_sample=False)
|
| 38 |
+
|
| 39 |
+
model.generate(**inputs, streamer=streamer, max_new_tokens=200, do_sample=False)
|
| 40 |
+
|
| 41 |
+
text_prompt = f"[INST] \n{input_text} [/INST]"
|
| 42 |
+
|
| 43 |
+
buffer = ""
|
| 44 |
+
time.sleep(0.5)
|
| 45 |
+
for new_text in streamer:
|
| 46 |
+
buffer += new_text
|
| 47 |
+
generated_text_without_prompt = buffer[len(text_prompt):]
|
| 48 |
+
time.sleep(0.04)
|
| 49 |
+
yield generated_text_without_prompt
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# prompt_length = inputs['input_ids'].shape[1]
|
| 53 |
+
# generate_ids = model.generate(**inputs, max_new_tokens=512)
|
| 54 |
+
# output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 55 |
+
# return output_text
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
image = gr.components.Image(type="pil")
|
| 59 |
+
input_prompt = gr.components.Textbox(label="Input Prompt")
|
| 60 |
+
model_output = gr.components.Textbox(label="Model Output")
|
| 61 |
+
examples = [["./examples/bar_m01.png", "Evaluate and explain if this chart is misleading"],
|
| 62 |
+
["./examples/bar_n01.png", "Is this chart misleading? Explain"],
|
| 63 |
+
["./examples/fox_news_cropped.png", "Tell me if this chart is misleading"],
|
| 64 |
+
["./examples/line_m01.png", "Explain if this chart is misleading"],
|
| 65 |
+
["./examples/line_m04.png", "Evaluate and explain if this chart is misleading"],
|
| 66 |
+
["./examples/pie_m01.png", "Evaluate if this chart is misleading, if so explain"],
|
| 67 |
+
["./examples/pie_m02.png", "Is this chart misleading? Explain"]]
|
| 68 |
+
|
| 69 |
+
title = "LlavaNext finetuned on Misleading Chart Dataset"
|
| 70 |
+
interface = gr.Interface(
|
| 71 |
+
fn=predict,
|
| 72 |
+
inputs=[image, input_prompt],
|
| 73 |
+
outputs=model_output,
|
| 74 |
+
examples=examples,
|
| 75 |
+
title=title,
|
| 76 |
+
theme='gradio/soft',
|
| 77 |
+
cache_examples=False
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
interface.launch()
|