File size: 5,028 Bytes
6fef025 89c5f18 f5b8400 53b0019 0318f31 f29f8ef 15a21d3 53b0019 0318f31 c469318 0318f31 b21c027 f5b8400 d6c665c f5b8400 6fef025 81987e1 6fef025 19aac56 f5b8400 6fef025 f5b8400 6fef025 f5b8400 0318f31 6fef025 1fb3ca0 f5b8400 1fb3ca0 25a1729 1fb3ca0 6fef025 bdcf524 132d5bb ca4c542 4424a6b ca4c542 132d5bb 781fec0 8f8f343 ca4c542 0b760cf 8f8f343 1fb3ca0 0318f31 ca4c542 3a0cfaa ca4c542 3a0cfaa 0318f31 2944f54 1fb3ca0 2944f54 26b4194 ca4c542 26b4194 ca4c542 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
from random import randint
from all_models import models
from datetime import datetime
now2 = 0
kii=" mohawk femboy racecar driver ";
def get_current_time():
now = datetime.now()
now2 = now
current_time = now2.strftime("%Y-%m-%d %H:%M:%S")
ki = f'{kii} {current_time}'
return ki
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr.load(f'models/{model}')
except Exception as error:
m = gr.Interface(lambda txt: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = len(models)
default_models = models[:num_models]
def extend_choices(choices):
return choices + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
def gen_fn(model_str, prompt, negative_prompt):
if model_str == 'NA':
return None
noise = str(randint(0, 9999))
combined_prompt = f'{prompt} {model_str} {negative_prompt} {noise}'
print(f"Generating with prompt: {combined_prompt}") # Debug line
# result = models_load[model_str](f'{prompt} {negative_prompt} {noise}')
# end_time = time.time() # End timing
# runtime = end_time - start_time
# model_timings[model_str] = runtime # Log the model's execution time
# queue_size -= 1 # Decrement queue size after processing
# return f"Model {model_str} ran for {runtime:.2f} seconds", result
return models_load[model_str](f'{prompt} {negative_prompt} {noise}')
def make_me():
# with gr.Tab('The Dream'):
with gr.Row():
txt_input = gr.Textbox(lines=2, value=kii )
#txt_input = gr.Textbox(label='Your prompt:', lines=2, value=kii)
negative_prompt_input = gr.Textbox(lines=2, value="", label="Negative Prompt" )
gen_button = gr.Button('Generate images')
stop_button = gr.Button('Stop', variant='secondary', interactive=False)
gen_button.click(lambda s: gr.update(interactive=True), None, stop_button)
gr.HTML("""
<div style="text-align: center; max-width: 100%; margin: 0 auto;">
<body>
</body>
</div>
""")
with gr.Row():
output = [gr.Image(label=m ) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gen_button.click(gen_fn, [m, txt_input, negative_prompt_input], o)
stop_button.click(lambda s: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
with gr.Accordion('Model selection'):
# model_choice = gr.CheckboxGroup(models, label=f' {num_models} different models selected', value=default_models, multiselect=True, max_choices=num_models, interactive=True, filterable=False)
# model_choice.change(update_imgbox, model_choice, output)
# model_choice.change(extend_choices, model_choice, current_models)
model_choice = gr.CheckboxGroup(models, label=f' {num_models} different models selected', value=default_models, interactive=True )
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
# with gr.Row():
# gr.HTML("""
# <div class="footer">
# <p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier!
# </p>
# """)
js_code = """
<script>
const originalScroll = window.scrollTo;
const originalShowToast = gradio.Toast.show;
gradio.Toast.show = function() {
originalShowToast.apply(this, arguments);
window.scrollTo = function() {};};
setTimeout(() => {
window.scrollTo = originalScroll;
}, 300000); // Restore scroll function after 3 seconds
</script>
"""
with gr.Blocks(css="""
label.float.svelte-i3tvor { top:auto!important; bottom: 0; position: absolute; background: rgba(0,0,0,0.0); left: var(--block-label-margin); color: rgba(200,200,200,.7);}
.genbut { max-width: 50px; max-height: 30px; width:150px; height:30px}
.stopbut { max-width: 50px; max-height: 30px; width:150px; height:30px}
.float.svelte-1mwvhlq { position: absolute; top: var(--block-label-margin); left: var(--block-label-margin); background: none; border: none;}
""") as demo:
gr.Markdown("<script>" + js_code + "</script>")
make_me()
demo.queue()
demo.launch(max_threads=200 )
|