File size: 8,499 Bytes
a3b1cb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01a6264
a3b1cb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# %%
# Import necessary libraries
from moviepy.editor import VideoFileClip
import os
from PIL import Image
import numpy as np


def extract_frames(video, frame_dir, n_samples, start=-1, end=-1):
    os.makedirs(frame_dir, exist_ok=True)
    
    if start == -1:
        start = 0
    if end == -1:
        end = video.duration

    duration = end - start
    interval = duration / n_samples
    
    for i in range(n_samples):
        frame_time = start + i * interval
        frame = video.get_frame(frame_time)
        frame_image = Image.fromarray(np.uint8(frame))
        frame_path = os.path.join(frame_dir, f"frame_{i+1}.png")
        frame_image.save(frame_path)


def extract_video_parts(video, out_dir):
    os.makedirs(out_dir, exist_ok=True)
    
    # Extract audio
    audio_path = f"{out_dir}/audio.mp3"
    video.audio.write_audiofile(audio_path)

    # Extract 20 frames from the video
    extract_frames(video, f"{out_dir}/frames", 20)

    # Extract 20 frames from first 5 seconds
    extract_frames(video, f"{out_dir}/5s_frames", 20, start=0, end=5)


# %%
tags = []
with open("labels.txt", "r") as f:
    for line in f:
        tags.append(line.strip())

# %%
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5')
text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
text_model.eval()

# Function to get embeddings for tags
def get_tag_embeddings(tags):
    encoded_input = tokenizer(tags, padding=True, truncation=True, return_tensors='pt')
    with torch.no_grad():
        model_output = text_model(**encoded_input)
    text_embeddings = F.normalize(model_output.last_hidden_state[:, 0], p=2, dim=1)
    return text_embeddings

tag_embeddings = get_tag_embeddings(tags)

# %%

from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import os
from collections import Counter

processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)

def get_frames(frame_dir):
    # Order frames by number but they will have numerical suffixes
    found_frames = [frame for frame in os.listdir(frame_dir) if frame.startswith("frame_")]
    frame_numbers = [int(frame.split("_")[-1].split(".")[0]) for frame in found_frames]
    frames = [Image.open(os.path.join(frame_dir, f"frame_{frame_no}.png")) for frame_no in sorted(frame_numbers)]
    return frames

def frames_to_embeddings(frames):
    inputs = processor(frames, return_tensors="pt")
    img_emb = vision_model(**inputs).last_hidden_state
    img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
    return img_embeddings

def compute_similarities(img_embeddings, tag_embeddings):
    similarities = torch.matmul(img_embeddings, tag_embeddings.T)
    return similarities

def get_top_tags(similarities, tags):
    top_5_tags = similarities.topk(5).indices.tolist()
    return [tags[tag_idx] for tag_idx in top_5_tags]

def analyze_frames(frame_dir, tag_embeddings):
    frames = get_frames(frame_dir)
    img_embeddings = frames_to_embeddings(frames)
    cosine_similarities = compute_similarities(img_embeddings, tag_embeddings)
    results = {
        "images": [],
        "summary": {}
    }
    summary = Counter()
    for i, img in enumerate(frames):
        top_5_tags = get_top_tags(cosine_similarities[i], tags)
        results["images"].append({"image": img.filename, "tags": top_5_tags})
        summary.update(top_5_tags)

    results["summary"]["tags"] = summary
    return results



# %%
import openai

def transcribe(audio_path):
    client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
    transcript = client.audio.transcriptions.create(model="whisper-1", file=open(audio_path, "rb"))
    return transcript.text


# %%
# Load model directly
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification

audio_extractor = AutoFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
audio_feature_model = AutoModelForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")

# %%
from pydub import AudioSegment

def extract_audio_features(audio_path):
    with open(audio_path, "rb") as file:
        audio = file.read()

        # Convert to wav
        audio = AudioSegment.from_file(audio_path, format="mp3")
        audio = audio.get_array_of_samples()
        inputs = audio_extractor(audio, return_tensors="pt")
        with torch.no_grad():
            outputs = audio_feature_model(**inputs).logits
            predicted_class_ids = outputs.topk(3).indices.tolist()[0]
            predicted_labels = [audio_feature_model.config.id2label[class_id] for class_id in predicted_class_ids]
        return predicted_labels

# %%
import base64
from io import BytesIO

def base64_encode_image(image):
    buffered = BytesIO()
    new_width = image.width // 2
    new_height = image.height // 2
    resized_image = image.resize((new_width, new_height), Image.LANCZOS)
    resized_image.save(buffered, format="JPEG")
    img_str = base64.b64encode(buffered.getvalue())
    return 'data:image/jpeg;base64,' + img_str.decode('utf-8')

def ai_summary(transcript, frames, audio_description, extra_context=""):
    client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
    messages=[
            {"role": "system", "content": "You are social media content analysis bot trying to uncover trends about what makes a video distinct. Given the transcript, frames, and a description of the audio, give a short analysis of the video content and what makes it unique."},
            {"role": "user", 
                "content": [{
                    "type": "text",
                    "text": f"Transcript: {transcript}\n\n\n\nAudio: {audio_description}\n\nExtra Context?: {extra_context or 'n/a'}",
                },
                *[
                {
                    "type": "image_url",
                        "image_url": {"url": base64_encode_image(frame)},
                    } for frame in frames
                ]
            ]}
    ]
    return client.chat.completions.create(
        model="gpt-4o",
        messages=messages
    )


# %%
import gradio as gr

# %%
import uuid, shutil
import tempfile

def tiktok_analyze(video_path):
    results = {
        "overview": "",
        "ai_overview": "",
        "first_5s_analysis": "",
        "video_analysis": "",
        "transcript": "",
    }

    video_id = str(uuid.uuid4())
    # copy video path to videos/video_id

    path_root = f"{tempfile.gettempdir()}/videos/{video_id}"
    os.makedirs(path_root, exist_ok=True)
    shutil.copy(video_path, f"{path_root}.mp4")
    video = VideoFileClip(f"{path_root}.mp4")
    extract_video_parts(video, f"{path_root}_parts")

    frames = get_frames(f"{path_root}_parts/frames")
    first_5s_analysis = analyze_frames(f"{path_root}_parts/5s_frames", tag_embeddings)
    whole_analysis = analyze_frames(f"{path_root}_parts/frames", tag_embeddings)

    audio_features = extract_audio_features(f"{path_root}_parts/audio.mp3")
    
    results["transcript"] = transcribe(f"{path_root}_parts/audio.mp3")

    ai_summary_response = ai_summary(results["transcript"], frames, audio_features).choices[0].message.content

    results["overview"] = f"""
    ## Overview
    **duration:** {video.duration}

    **major themes:** {", ".join(list(whole_analysis["summary"]["tags"])[:5])}

    **audio:** {", ".join(audio_features)}
    """

    results["ai_overview"] = "# AI Summary\n" + ai_summary_response
    results["first_5s_analysis"] = f"Major themes: {', '.join(first_5s_analysis['summary']['tags'])}"
    results["video_analysis"] = f"Major themes: {', '.join(whole_analysis['summary']['tags'])}"

    return [
        results["overview"],
        results["first_5s_analysis"],
        results["video_analysis"],
        results["ai_overview"],
        results["transcript"],
    ]

demo = gr.Interface(
    title="Tiktok Content Analyzer", 
    description="Start by uploading a video to analyze.", 
    fn=tiktok_analyze, 
    inputs="video", 
    outputs=[
        gr.Markdown(label="Overview"), 
        gr.Text(label="First 5s Content Analysis"), 
        gr.Text(label="Content Analysis"), 
        gr.Markdown(label="AI Summary"),
        gr.Text(label="Transcript")]
)

demo.launch()

# %%