Spaces:
Running
Running
File size: 8,499 Bytes
a3b1cb3 01a6264 a3b1cb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# %%
# Import necessary libraries
from moviepy.editor import VideoFileClip
import os
from PIL import Image
import numpy as np
def extract_frames(video, frame_dir, n_samples, start=-1, end=-1):
os.makedirs(frame_dir, exist_ok=True)
if start == -1:
start = 0
if end == -1:
end = video.duration
duration = end - start
interval = duration / n_samples
for i in range(n_samples):
frame_time = start + i * interval
frame = video.get_frame(frame_time)
frame_image = Image.fromarray(np.uint8(frame))
frame_path = os.path.join(frame_dir, f"frame_{i+1}.png")
frame_image.save(frame_path)
def extract_video_parts(video, out_dir):
os.makedirs(out_dir, exist_ok=True)
# Extract audio
audio_path = f"{out_dir}/audio.mp3"
video.audio.write_audiofile(audio_path)
# Extract 20 frames from the video
extract_frames(video, f"{out_dir}/frames", 20)
# Extract 20 frames from first 5 seconds
extract_frames(video, f"{out_dir}/5s_frames", 20, start=0, end=5)
# %%
tags = []
with open("labels.txt", "r") as f:
for line in f:
tags.append(line.strip())
# %%
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5')
text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
text_model.eval()
# Function to get embeddings for tags
def get_tag_embeddings(tags):
encoded_input = tokenizer(tags, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = text_model(**encoded_input)
text_embeddings = F.normalize(model_output.last_hidden_state[:, 0], p=2, dim=1)
return text_embeddings
tag_embeddings = get_tag_embeddings(tags)
# %%
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import os
from collections import Counter
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
def get_frames(frame_dir):
# Order frames by number but they will have numerical suffixes
found_frames = [frame for frame in os.listdir(frame_dir) if frame.startswith("frame_")]
frame_numbers = [int(frame.split("_")[-1].split(".")[0]) for frame in found_frames]
frames = [Image.open(os.path.join(frame_dir, f"frame_{frame_no}.png")) for frame_no in sorted(frame_numbers)]
return frames
def frames_to_embeddings(frames):
inputs = processor(frames, return_tensors="pt")
img_emb = vision_model(**inputs).last_hidden_state
img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
return img_embeddings
def compute_similarities(img_embeddings, tag_embeddings):
similarities = torch.matmul(img_embeddings, tag_embeddings.T)
return similarities
def get_top_tags(similarities, tags):
top_5_tags = similarities.topk(5).indices.tolist()
return [tags[tag_idx] for tag_idx in top_5_tags]
def analyze_frames(frame_dir, tag_embeddings):
frames = get_frames(frame_dir)
img_embeddings = frames_to_embeddings(frames)
cosine_similarities = compute_similarities(img_embeddings, tag_embeddings)
results = {
"images": [],
"summary": {}
}
summary = Counter()
for i, img in enumerate(frames):
top_5_tags = get_top_tags(cosine_similarities[i], tags)
results["images"].append({"image": img.filename, "tags": top_5_tags})
summary.update(top_5_tags)
results["summary"]["tags"] = summary
return results
# %%
import openai
def transcribe(audio_path):
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
transcript = client.audio.transcriptions.create(model="whisper-1", file=open(audio_path, "rb"))
return transcript.text
# %%
# Load model directly
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
audio_extractor = AutoFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
audio_feature_model = AutoModelForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
# %%
from pydub import AudioSegment
def extract_audio_features(audio_path):
with open(audio_path, "rb") as file:
audio = file.read()
# Convert to wav
audio = AudioSegment.from_file(audio_path, format="mp3")
audio = audio.get_array_of_samples()
inputs = audio_extractor(audio, return_tensors="pt")
with torch.no_grad():
outputs = audio_feature_model(**inputs).logits
predicted_class_ids = outputs.topk(3).indices.tolist()[0]
predicted_labels = [audio_feature_model.config.id2label[class_id] for class_id in predicted_class_ids]
return predicted_labels
# %%
import base64
from io import BytesIO
def base64_encode_image(image):
buffered = BytesIO()
new_width = image.width // 2
new_height = image.height // 2
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
resized_image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
return 'data:image/jpeg;base64,' + img_str.decode('utf-8')
def ai_summary(transcript, frames, audio_description, extra_context=""):
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
messages=[
{"role": "system", "content": "You are social media content analysis bot trying to uncover trends about what makes a video distinct. Given the transcript, frames, and a description of the audio, give a short analysis of the video content and what makes it unique."},
{"role": "user",
"content": [{
"type": "text",
"text": f"Transcript: {transcript}\n\n\n\nAudio: {audio_description}\n\nExtra Context?: {extra_context or 'n/a'}",
},
*[
{
"type": "image_url",
"image_url": {"url": base64_encode_image(frame)},
} for frame in frames
]
]}
]
return client.chat.completions.create(
model="gpt-4o",
messages=messages
)
# %%
import gradio as gr
# %%
import uuid, shutil
import tempfile
def tiktok_analyze(video_path):
results = {
"overview": "",
"ai_overview": "",
"first_5s_analysis": "",
"video_analysis": "",
"transcript": "",
}
video_id = str(uuid.uuid4())
# copy video path to videos/video_id
path_root = f"{tempfile.gettempdir()}/videos/{video_id}"
os.makedirs(path_root, exist_ok=True)
shutil.copy(video_path, f"{path_root}.mp4")
video = VideoFileClip(f"{path_root}.mp4")
extract_video_parts(video, f"{path_root}_parts")
frames = get_frames(f"{path_root}_parts/frames")
first_5s_analysis = analyze_frames(f"{path_root}_parts/5s_frames", tag_embeddings)
whole_analysis = analyze_frames(f"{path_root}_parts/frames", tag_embeddings)
audio_features = extract_audio_features(f"{path_root}_parts/audio.mp3")
results["transcript"] = transcribe(f"{path_root}_parts/audio.mp3")
ai_summary_response = ai_summary(results["transcript"], frames, audio_features).choices[0].message.content
results["overview"] = f"""
## Overview
**duration:** {video.duration}
**major themes:** {", ".join(list(whole_analysis["summary"]["tags"])[:5])}
**audio:** {", ".join(audio_features)}
"""
results["ai_overview"] = "# AI Summary\n" + ai_summary_response
results["first_5s_analysis"] = f"Major themes: {', '.join(first_5s_analysis['summary']['tags'])}"
results["video_analysis"] = f"Major themes: {', '.join(whole_analysis['summary']['tags'])}"
return [
results["overview"],
results["first_5s_analysis"],
results["video_analysis"],
results["ai_overview"],
results["transcript"],
]
demo = gr.Interface(
title="Tiktok Content Analyzer",
description="Start by uploading a video to analyze.",
fn=tiktok_analyze,
inputs="video",
outputs=[
gr.Markdown(label="Overview"),
gr.Text(label="First 5s Content Analysis"),
gr.Text(label="Content Analysis"),
gr.Markdown(label="AI Summary"),
gr.Text(label="Transcript")]
)
demo.launch()
# %%
|