aegwe4 / app /services /SDE /short_drama_explanation.py
chaowenguo's picture
Upload 121 files
3b13b0e verified
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
@Project: NarratoAI
@File : 短剧解说
@Author : 小林同学
@Date : 2025/5/9 上午12:36
'''
import os
import json
import requests
from typing import Dict, Any, Optional
from loguru import logger
from app.config import config
from app.utils.utils import get_uuid, storage_dir
from app.services.SDE.prompt import subtitle_plot_analysis_v1, plot_writing
class SubtitleAnalyzer:
"""字幕剧情分析器,负责分析字幕内容并提取关键剧情段落"""
def __init__(
self,
api_key: Optional[str] = None,
model: Optional[str] = None,
base_url: Optional[str] = None,
custom_prompt: Optional[str] = None,
temperature: Optional[float] = 1.0,
):
"""
初始化字幕分析器
Args:
api_key: API密钥,如果不提供则从配置中读取
model: 模型名称,如果不提供则从配置中读取
base_url: API基础URL,如果不提供则从配置中读取或使用默认值
custom_prompt: 自定义提示词,如果不提供则使用默认值
temperature: 模型温度
"""
# 使用传入的参数或从配置中获取
self.api_key = api_key
self.model = model
self.base_url = base_url
self.temperature = temperature
# 设置提示词模板
self.prompt_template = custom_prompt or subtitle_plot_analysis_v1
# 初始化HTTP请求所需的头信息
self._init_headers()
def _init_headers(self):
"""初始化HTTP请求头"""
try:
# 基础请求头,包含API密钥和内容类型
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}"
}
# logger.debug(f"初始化成功 - API Key: {self.api_key[:8]}... - Base URL: {self.base_url}")
except Exception as e:
logger.error(f"初始化请求头失败: {str(e)}")
raise
def analyze_subtitle(self, subtitle_content: str) -> Dict[str, Any]:
"""
分析字幕内容
Args:
subtitle_content: 字幕内容文本
Returns:
Dict[str, Any]: 包含分析结果的字典
"""
try:
# 构建完整提示词
prompt = f"{self.prompt_template}\n\n{subtitle_content}"
# 构建请求体数据
payload = {
"model": self.model,
"messages": [
{"role": "system", "content": "你是一位专业的剧本分析师和剧情概括助手。"},
{"role": "user", "content": prompt}
],
"temperature": self.temperature
}
# 构建请求地址
url = f"{self.base_url}/chat/completions"
# 发送HTTP请求
response = requests.post(url, headers=self.headers, json=payload)
# 解析响应
if response.status_code == 200:
response_data = response.json()
# 提取响应内容
if "choices" in response_data and len(response_data["choices"]) > 0:
analysis_result = response_data["choices"][0]["message"]["content"]
logger.debug(f"字幕分析完成,消耗的tokens: {response_data.get('usage', {}).get('total_tokens', 0)}")
# 返回结果
return {
"status": "success",
"analysis": analysis_result,
"tokens_used": response_data.get("usage", {}).get("total_tokens", 0),
"model": self.model,
"temperature": self.temperature
}
else:
logger.error("字幕分析失败: 未获取到有效响应")
return {
"status": "error",
"message": "未获取到有效响应",
"temperature": self.temperature
}
else:
error_msg = f"请求失败,状态码: {response.status_code}, 响应: {response.text}"
logger.error(error_msg)
return {
"status": "error",
"message": error_msg,
"temperature": self.temperature
}
except Exception as e:
logger.error(f"字幕分析过程中发生错误: {str(e)}")
return {
"status": "error",
"message": str(e),
"temperature": self.temperature
}
def analyze_subtitle_from_file(self, subtitle_file_path: str) -> Dict[str, Any]:
"""
从文件读取字幕并分析
Args:
subtitle_file_path: 字幕文件的路径
Returns:
Dict[str, Any]: 包含分析结果的字典
"""
try:
# 检查文件是否存在
if not os.path.exists(subtitle_file_path):
return {
"status": "error",
"message": f"字幕文件不存在: {subtitle_file_path}",
"temperature": self.temperature
}
# 读取文件内容
with open(subtitle_file_path, 'r', encoding='utf-8') as f:
subtitle_content = f.read()
# 分析字幕
return self.analyze_subtitle(subtitle_content)
except Exception as e:
logger.error(f"从文件读取字幕并分析过程中发生错误: {str(e)}")
return {
"status": "error",
"message": str(e),
"temperature": self.temperature
}
def save_analysis_result(self, analysis_result: Dict[str, Any], output_path: Optional[str] = None) -> str:
"""
保存分析结果到文件
Args:
analysis_result: 分析结果
output_path: 输出文件路径,如果不提供则自动生成
Returns:
str: 输出文件的路径
"""
try:
# 如果未提供输出路径,则自动生成
if not output_path:
output_dir = storage_dir("drama_analysis", create=True)
output_path = os.path.join(output_dir, f"analysis_{get_uuid(True)}.txt")
# 确保目录存在
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# 保存结果
with open(output_path, 'w', encoding='utf-8') as f:
if analysis_result["status"] == "success":
f.write(analysis_result["analysis"])
else:
f.write(f"分析失败: {analysis_result['message']}")
logger.info(f"分析结果已保存到: {output_path}")
return output_path
except Exception as e:
logger.error(f"保存分析结果时发生错误: {str(e)}")
return ""
def generate_narration_script(self, short_name:str, plot_analysis: str, temperature: float = 0.7) -> Dict[str, Any]:
"""
根据剧情分析生成解说文案
Args:
short_name: 短剧名称
plot_analysis: 剧情分析内容
temperature: 生成温度,控制创造性,默认0.7
Returns:
Dict[str, Any]: 包含生成结果的字典
"""
try:
# 构建完整提示词
prompt = plot_writing % (short_name, plot_analysis)
# 构建请求体数据
payload = {
"model": self.model,
"messages": [
{"role": "system", "content": "你是一位专业的短视频解说脚本撰写专家。"},
{"role": "user", "content": prompt}
],
"temperature": temperature
}
# 对特定模型添加响应格式设置
if self.model not in ["deepseek-reasoner"]:
payload["response_format"] = {"type": "json_object"}
# 构建请求地址
url = f"{self.base_url}/chat/completions"
# 发送HTTP请求
response = requests.post(url, headers=self.headers, json=payload)
# 解析响应
if response.status_code == 200:
response_data = response.json()
# 提取响应内容
if "choices" in response_data and len(response_data["choices"]) > 0:
narration_script = response_data["choices"][0]["message"]["content"]
logger.debug(f"解说文案生成完成,消耗的tokens: {response_data.get('usage', {}).get('total_tokens', 0)}")
# 返回结果
return {
"status": "success",
"narration_script": narration_script,
"tokens_used": response_data.get("usage", {}).get("total_tokens", 0),
"model": self.model,
"temperature": self.temperature
}
else:
logger.error("解说文案生成失败: 未获取到有效响应")
return {
"status": "error",
"message": "未获取到有效响应",
"temperature": self.temperature
}
else:
error_msg = f"请求失败,状态码: {response.status_code}, 响应: {response.text}"
logger.error(error_msg)
return {
"status": "error",
"message": error_msg,
"temperature": self.temperature
}
except Exception as e:
logger.error(f"解说文案生成过程中发生错误: {str(e)}")
return {
"status": "error",
"message": str(e),
"temperature": self.temperature
}
def save_narration_script(self, narration_result: Dict[str, Any], output_path: Optional[str] = None) -> str:
"""
保存解说文案到文件
Args:
narration_result: 解说文案生成结果
output_path: 输出文件路径,如果不提供则自动生成
Returns:
str: 输出文件的路径
"""
try:
# 如果未提供输出路径,则自动生成
if not output_path:
output_dir = storage_dir("narration_scripts", create=True)
output_path = os.path.join(output_dir, f"narration_{get_uuid(True)}.json")
# 确保目录存在
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# 保存结果
with open(output_path, 'w', encoding='utf-8') as f:
if narration_result["status"] == "success":
f.write(narration_result["narration_script"])
else:
f.write(f"生成失败: {narration_result['message']}")
logger.info(f"解说文案已保存到: {output_path}")
return output_path
except Exception as e:
logger.error(f"保存解说文案时发生错误: {str(e)}")
return ""
def analyze_subtitle(
subtitle_content: str = None,
subtitle_file_path: str = None,
api_key: Optional[str] = None,
model: Optional[str] = None,
base_url: Optional[str] = None,
custom_prompt: Optional[str] = None,
temperature: float = 1.0,
save_result: bool = False,
output_path: Optional[str] = None
) -> Dict[str, Any]:
"""
分析字幕内容的便捷函数
Args:
subtitle_content: 字幕内容文本
subtitle_file_path: 字幕文件路径
custom_prompt: 自定义提示词
api_key: API密钥
model: 模型名称
base_url: API基础URL
temperature: 模型温度
save_result: 是否保存结果到文件
output_path: 输出文件路径
Returns:
Dict[str, Any]: 包含分析结果的字典
"""
# 初始化分析器
analyzer = SubtitleAnalyzer(
temperature=temperature,
api_key=api_key,
model=model,
base_url=base_url,
custom_prompt=custom_prompt
)
logger.debug(f"使用模型: {analyzer.model} 开始分析, 温度: {analyzer.temperature}")
# 分析字幕
if subtitle_content:
result = analyzer.analyze_subtitle(subtitle_content)
elif subtitle_file_path:
result = analyzer.analyze_subtitle_from_file(subtitle_file_path)
else:
return {
"status": "error",
"message": "必须提供字幕内容或字幕文件路径",
"temperature": temperature
}
# 保存结果
if save_result and result["status"] == "success":
result["output_path"] = analyzer.save_analysis_result(result, output_path)
return result
def generate_narration_script(
short_name: str = None,
plot_analysis: str = None,
api_key: Optional[str] = None,
model: Optional[str] = None,
base_url: Optional[str] = None,
temperature: float = 1.0,
save_result: bool = False,
output_path: Optional[str] = None
) -> Dict[str, Any]:
"""
根据剧情分析生成解说文案的便捷函数
Args:
short_name: 短剧名称
plot_analysis: 剧情分析内容,直接提供
api_key: API密钥
model: 模型名称
base_url: API基础URL
temperature: 生成温度,控制创造性
save_result: 是否保存结果到文件
output_path: 输出文件路径
Returns:
Dict[str, Any]: 包含生成结果的字典
"""
# 初始化分析器
analyzer = SubtitleAnalyzer(
temperature=temperature,
api_key=api_key,
model=model,
base_url=base_url
)
# 生成解说文案
result = analyzer.generate_narration_script(short_name, plot_analysis, temperature)
# 保存结果
if save_result and result["status"] == "success":
result["output_path"] = analyzer.save_narration_script(result, output_path)
return result
if __name__ == '__main__':
text_api_key = "skxxxx"
text_model = "gemini-2.0-flash"
text_base_url = "https://api.narratoai.cn/v1/chat/completions" # 确保URL不以斜杠结尾,便于后续拼接
subtitle_path = "/Users/apple/Desktop/home/NarratoAI/resource/srt/家里家外1-5.srt"
# 示例用法
if subtitle_path:
# 分析字幕总结剧情
analysis_result = analyze_subtitle(
subtitle_file_path=subtitle_path,
api_key=text_api_key,
model=text_model,
base_url=text_base_url,
save_result=True
)
if analysis_result["status"] == "success":
print("字幕分析成功!")
print("分析结果:")
print(analysis_result["analysis"])
# 根据剧情生成解说文案
narration_result = generate_narration_script(
plot_analysis=analysis_result["analysis"],
api_key=text_api_key,
model=text_model,
base_url=text_base_url,
save_result=True
)
if narration_result["status"] == "success":
print("\n解说文案生成成功!")
print("解说文案:")
print(narration_result["narration_script"])
else:
print(f"\n解说文案生成失败: {narration_result['message']}")
else:
print(f"分析失败: {analysis_result['message']}")