aegwe4 / webui.py
chaowenguo's picture
Upload 121 files
3b13b0e verified
raw
history blame
8.62 kB
import streamlit as st
import os
import sys
from loguru import logger
from app.config import config
from webui.components import basic_settings, video_settings, audio_settings, subtitle_settings, script_settings, \
review_settings, merge_settings, system_settings
# from webui.utils import cache, file_utils
from app.utils import utils
from app.utils import ffmpeg_utils
from app.models.schema import VideoClipParams, VideoAspect
# 初始化配置 - 必须是第一个 Streamlit 命令
st.set_page_config(
page_title="NarratoAI",
page_icon="📽️",
layout="wide",
initial_sidebar_state="auto",
menu_items={
"Report a bug": "https://github.com/linyqh/NarratoAI/issues",
'About': f"# Narrato:blue[AI] :sunglasses: 📽️ \n #### Version: v{config.project_version} \n "
f"自动化影视解说视频详情请移步:https://github.com/linyqh/NarratoAI"
},
)
# 设置页面样式
hide_streamlit_style = """
<style>#root > div:nth-child(1) > div > div > div > div > section > div {padding-top: 6px; padding-bottom: 10px; padding-left: 20px; padding-right: 20px;}</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
def init_log():
"""初始化日志配置"""
from loguru import logger
logger.remove()
_lvl = "DEBUG"
def format_record(record):
# 简化日志格式化处理,不尝试按特定字符串过滤torch相关内容
file_path = record["file"].path
relative_path = os.path.relpath(file_path, config.root_dir)
record["file"].path = f"./{relative_path}"
record['message'] = record['message'].replace(config.root_dir, ".")
_format = '<green>{time:%Y-%m-%d %H:%M:%S}</> | ' + \
'<level>{level}</> | ' + \
'"{file.path}:{line}":<blue> {function}</> ' + \
'- <level>{message}</>' + "\n"
return _format
# 替换为更简单的过滤方式,避免在过滤时访问message内容
# 此处先不设置复杂的过滤器,等应用启动后再动态添加
logger.add(
sys.stdout,
level=_lvl,
format=format_record,
colorize=True
)
# 应用启动后,可以再添加更复杂的过滤器
def setup_advanced_filters():
"""在应用完全启动后设置高级过滤器"""
try:
for handler_id in logger._core.handlers:
logger.remove(handler_id)
# 重新添加带有高级过滤的处理器
def advanced_filter(record):
"""更复杂的过滤器,在应用启动后安全使用"""
ignore_messages = [
"Examining the path of torch.classes raised",
"torch.cuda.is_available()",
"CUDA initialization"
]
return not any(msg in record["message"] for msg in ignore_messages)
logger.add(
sys.stdout,
level=_lvl,
format=format_record,
colorize=True,
filter=advanced_filter
)
except Exception as e:
# 如果过滤器设置失败,确保日志仍然可用
logger.add(
sys.stdout,
level=_lvl,
format=format_record,
colorize=True
)
logger.error(f"设置高级日志过滤器失败: {e}")
# 将高级过滤器设置放到启动主逻辑后
import threading
threading.Timer(5.0, setup_advanced_filters).start()
def init_global_state():
"""初始化全局状态"""
if 'video_clip_json' not in st.session_state:
st.session_state['video_clip_json'] = []
if 'video_plot' not in st.session_state:
st.session_state['video_plot'] = ''
if 'ui_language' not in st.session_state:
st.session_state['ui_language'] = config.ui.get("language", utils.get_system_locale())
if 'subclip_videos' not in st.session_state:
st.session_state['subclip_videos'] = {}
def tr(key):
"""翻译函数"""
i18n_dir = os.path.join(os.path.dirname(__file__), "webui", "i18n")
locales = utils.load_locales(i18n_dir)
loc = locales.get(st.session_state['ui_language'], {})
return loc.get("Translation", {}).get(key, key)
def render_generate_button():
"""渲染生成按钮和处理逻辑"""
if st.button(tr("Generate Video"), use_container_width=True, type="primary"):
from app.services import task as tm
# 重置日志容器和记录
log_container = st.empty()
log_records = []
def log_received(msg):
with log_container:
log_records.append(msg)
st.code("\n".join(log_records))
from loguru import logger
logger.add(log_received)
config.save_config()
task_id = st.session_state.get('task_id')
if not task_id:
st.error(tr("请先裁剪视频"))
return
if not st.session_state.get('video_clip_json_path'):
st.error(tr("脚本文件不能为空"))
return
if not st.session_state.get('video_origin_path'):
st.error(tr("视频文件不能为空"))
return
st.toast(tr("生成视频"))
logger.info(tr("开始生成视频"))
# 获取所有参数
script_params = script_settings.get_script_params()
video_params = video_settings.get_video_params()
audio_params = audio_settings.get_audio_params()
subtitle_params = subtitle_settings.get_subtitle_params()
# 合并所有参数
all_params = {
**script_params,
**video_params,
**audio_params,
**subtitle_params
}
# 创建参数对象
params = VideoClipParams(**all_params)
result = tm.start_subclip(
task_id=task_id,
params=params,
subclip_path_videos=st.session_state['subclip_videos']
)
video_files = result.get("videos", [])
st.success(tr("视生成完成"))
try:
if video_files:
player_cols = st.columns(len(video_files) * 2 + 1)
for i, url in enumerate(video_files):
player_cols[i * 2 + 1].video(url)
except Exception as e:
logger.error(f"播放视频失败: {e}")
# file_utils.open_task_folder(config.root_dir, task_id)
logger.info(tr("视频生成完成"))
# 全局变量,记录是否已经打印过硬件加速信息
_HAS_LOGGED_HWACCEL_INFO = False
def main():
"""主函数"""
global _HAS_LOGGED_HWACCEL_INFO
init_log()
init_global_state()
# 检测FFmpeg硬件加速,但只打印一次日志
hwaccel_info = ffmpeg_utils.detect_hardware_acceleration()
if not _HAS_LOGGED_HWACCEL_INFO:
if hwaccel_info["available"]:
logger.info(f"FFmpeg硬件加速检测结果: 可用 | 类型: {hwaccel_info['type']} | 编码器: {hwaccel_info['encoder']} | 独立显卡: {hwaccel_info['is_dedicated_gpu']} | 参数: {hwaccel_info['hwaccel_args']}")
else:
logger.warning(f"FFmpeg硬件加速不可用: {hwaccel_info['message']}, 将使用CPU软件编码")
_HAS_LOGGED_HWACCEL_INFO = True
# 仅初始化基本资源,避免过早地加载依赖PyTorch的资源
# 检查是否能分解utils.init_resources()为基本资源和高级资源(如依赖PyTorch的资源)
try:
utils.init_resources()
except Exception as e:
logger.warning(f"资源初始化时出现警告: {e}")
st.title(f"Narrato:blue[AI]:sunglasses: 📽️")
st.write(tr("Get Help"))
# 首先渲染不依赖PyTorch的UI部分
# 渲染基础设置面板
basic_settings.render_basic_settings(tr)
# 渲染合并设置
merge_settings.render_merge_settings(tr)
# 渲染主面板
panel = st.columns(3)
with panel[0]:
script_settings.render_script_panel(tr)
with panel[1]:
video_settings.render_video_panel(tr)
audio_settings.render_audio_panel(tr)
with panel[2]:
subtitle_settings.render_subtitle_panel(tr)
# 渲染视频审查面板
review_settings.render_review_panel(tr)
# 放到最后渲染可能使用PyTorch的部分
# 渲染系统设置面板
with panel[2]:
system_settings.render_system_panel(tr)
# 放到最后渲染生成按钮和处理逻辑
render_generate_button()
if __name__ == "__main__":
main()