import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the model and tokenizer from Hugging Face model_name = "Salesforce/codet5-small" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Streamlit UI st.title("Code Generator") st.write("Generate code snippets from natural language prompts using CodeT5!") # Input for natural language prompt prompt = st.text_area("Enter your coding task:", placeholder="Write a Python function to calculate the factorial of a number.") # Slider to control output length max_length = st.slider("Maximum length of generated code:", 20, 200, 50) # Button to trigger code generation if st.button("Generate Code"): if prompt.strip(): # Tokenize and generate code inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) outputs = model.generate(inputs.input_ids, max_length=max_length, num_beams=4, early_stopping=True) generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) # Display generated code st.write("### Generated Code:") st.code(generated_code, language="python") else: st.warning("Please enter a prompt to generate code.")