Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from langchain.document_loaders import PyPDFLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain.chat_models import ChatOpenAI
|
9 |
+
|
10 |
+
# Streamlit App Title
|
11 |
+
st.title("π DeepSeek-Powered RAG Chatbot")
|
12 |
+
|
13 |
+
# Step 1: Input API Key
|
14 |
+
api_key = st.text_input("π Enter your DeepSeek API Key:", type="password")
|
15 |
+
|
16 |
+
if api_key:
|
17 |
+
# Set the API key as an environment variable (optional)
|
18 |
+
os.environ["DEEPSEEK_API_KEY"] = api_key
|
19 |
+
|
20 |
+
# Step 2: Upload PDF Document
|
21 |
+
uploaded_file = st.file_uploader("π Upload a PDF document", type=["pdf"])
|
22 |
+
|
23 |
+
if uploaded_file:
|
24 |
+
# Load and process the document
|
25 |
+
with st.spinner("Processing document..."):
|
26 |
+
loader = PyPDFLoader(uploaded_file)
|
27 |
+
documents = loader.load()
|
28 |
+
|
29 |
+
# Split the document into chunks
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
31 |
+
chunks = text_splitter.split_documents(documents)
|
32 |
+
|
33 |
+
# Generate embeddings and store them in a vector database
|
34 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
35 |
+
vector_store = FAISS.from_documents(chunks, embeddings)
|
36 |
+
|
37 |
+
st.success("Document processed successfully!")
|
38 |
+
|
39 |
+
# Step 3: Ask Questions About the Document
|
40 |
+
st.subheader("π¬ Chat with Your Document")
|
41 |
+
user_query = st.text_input("Ask a question:")
|
42 |
+
|
43 |
+
if user_query:
|
44 |
+
# Set up the RAG pipeline with DeepSeek LLM
|
45 |
+
retriever = vector_store.as_retriever()
|
46 |
+
llm = ChatOpenAI(
|
47 |
+
model="deepseek-chat",
|
48 |
+
openai_api_key=api_key,
|
49 |
+
openai_api_base="https://api.deepseek.com/v1",
|
50 |
+
temperature=0.85,
|
51 |
+
max_tokens=4000 # Ensure compliance with DeepSeek's token limit
|
52 |
+
)
|
53 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
54 |
+
|
55 |
+
# Generate response
|
56 |
+
with st.spinner("Generating response..."):
|
57 |
+
try:
|
58 |
+
response = qa_chain.run(user_query)
|
59 |
+
st.write(f"**Answer:** {response}")
|
60 |
+
except Exception as e:
|
61 |
+
st.error(f"Error: {e}")
|
62 |
+
else:
|
63 |
+
st.warning("Please enter your DeepSeek API key to proceed.")
|