from langchain_community.document_loaders import PyPDFLoader,DirectoryLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS loader = DirectoryLoader('ipc-data', glob="./*.pdf", loader_cls=PyPDFLoader) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200) texts = text_splitter.split_documents(documents) embeddings = HuggingFaceEmbeddings( model_name="nomic-ai/nomic-embed-text-v1", model_kwargs={"trust_remote_code": True, "revision": "289f532e14dbbbd5a04753fa58739e9ba766f3c7"}, ) # Creates vector embeddings and saves it in the FAISS DB faiss_db = FAISS.from_documents(texts, embeddings) # Saves and export the vector embeddings databse faiss_db.save_local("ipc_vector_db")