Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -59,7 +59,7 @@ except Exception as e:
|
|
59 |
# ==========================
|
60 |
try:
|
61 |
db = FAISS.load_local("ipc_vector_db", embeddings, allow_dangerous_deserialization=True)
|
62 |
-
db_retriever = db.as_retriever(search_type="
|
63 |
logger.info("Vectorstore successfully loaded.")
|
64 |
except Exception as e:
|
65 |
logger.error(f"Error loading FAISS vectorstore: {e}")
|
@@ -125,11 +125,12 @@ async def chat(request: ChatRequest):
|
|
125 |
try:
|
126 |
logger.debug(f"Received user question: {request.question}")
|
127 |
|
128 |
-
# Retrieve documents and log them
|
129 |
-
retrieved_docs = db_retriever.
|
130 |
-
logger.debug("Retrieved Documents:")
|
131 |
-
for i, doc in enumerate(retrieved_docs, start=1):
|
132 |
-
logger.debug(f"Document {i}: {doc.page_content[:500]}...")
|
|
|
133 |
|
134 |
# Invoke the QA chain with the user question
|
135 |
result = qa.invoke(input=request.question)
|
|
|
59 |
# ==========================
|
60 |
try:
|
61 |
db = FAISS.load_local("ipc_vector_db", embeddings, allow_dangerous_deserialization=True)
|
62 |
+
db_retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": 5, "max-length": 512})
|
63 |
logger.info("Vectorstore successfully loaded.")
|
64 |
except Exception as e:
|
65 |
logger.error(f"Error loading FAISS vectorstore: {e}")
|
|
|
125 |
try:
|
126 |
logger.debug(f"Received user question: {request.question}")
|
127 |
|
128 |
+
# Retrieve documents and log them with similarity scores
|
129 |
+
retrieved_docs = db_retriever.invoke({"query": request.question})
|
130 |
+
logger.debug("Retrieved Documents and Scores:")
|
131 |
+
for i, doc in enumerate(retrieved_docs["documents"], start=1):
|
132 |
+
logger.debug(f"Document {i}: {doc.page_content[:500]}...")
|
133 |
+
logger.debug(f"Score: {retrieved_docs['scores'][i-1]}")
|
134 |
|
135 |
# Invoke the QA chain with the user question
|
136 |
result = qa.invoke(input=request.question)
|