Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -17,28 +17,21 @@ import uvicorn
|
|
| 17 |
# Logging configuration
|
| 18 |
logging.basicConfig(level=logging.DEBUG)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
-
logger.debug("Starting
|
| 21 |
|
| 22 |
# Suppress warnings
|
| 23 |
-
warnings.filterwarnings("ignore", message="You are using `torch.load` with `weights_only=False
|
| 24 |
-
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 25 |
-
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
| 26 |
|
| 27 |
# Load environment variables
|
| 28 |
load_dotenv()
|
| 29 |
TOGETHER_AI_API = os.getenv("TOGETHER_AI")
|
| 30 |
HF_HOME = os.getenv("HF_HOME", "./cache")
|
| 31 |
-
|
| 32 |
-
# Set cache directory for Hugging Face
|
| 33 |
os.environ["HF_HOME"] = HF_HOME
|
| 34 |
-
|
| 35 |
-
# Ensure HF_HOME exists and is writable
|
| 36 |
if not os.path.exists(HF_HOME):
|
| 37 |
os.makedirs(HF_HOME, exist_ok=True)
|
| 38 |
|
| 39 |
-
# Validate environment variables
|
| 40 |
if not TOGETHER_AI_API:
|
| 41 |
-
raise ValueError("
|
| 42 |
|
| 43 |
# Initialize embeddings
|
| 44 |
try:
|
|
@@ -48,54 +41,43 @@ try:
|
|
| 48 |
)
|
| 49 |
except Exception as e:
|
| 50 |
logger.error(f"Error loading embeddings: {e}")
|
| 51 |
-
raise RuntimeError("
|
| 52 |
|
| 53 |
-
#
|
| 54 |
try:
|
| 55 |
db = FAISS.load_local("ipc_vector_db", embeddings, allow_dangerous_deserialization=True)
|
| 56 |
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5, "score_threshold": 0.8})
|
| 57 |
except Exception as e:
|
| 58 |
logger.error(f"Error loading FAISS vectorstore: {e}")
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
except Exception as inner_e:
|
| 68 |
-
logger.error(f"Error creating FAISS vectorstore: {inner_e}")
|
| 69 |
-
raise RuntimeError("FAISS vectorstore could not be created or loaded.")
|
| 70 |
-
|
| 71 |
-
# Define the prompt template
|
| 72 |
prompt_template = """
|
| 73 |
-
As a legal chatbot specializing in the Indian Penal Code (IPC), provide
|
| 74 |
-
Respond only if the answer can be derived from the given context; otherwise, say:
|
| 75 |
-
"The information is not available in the provided context."
|
| 76 |
-
Use plain, professional language in your response.
|
| 77 |
|
| 78 |
CONTEXT: {context}
|
| 79 |
-
|
| 80 |
CHAT HISTORY: {chat_history}
|
| 81 |
-
|
| 82 |
QUESTION: {question}
|
| 83 |
-
|
| 84 |
ANSWER:
|
| 85 |
"""
|
| 86 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question", "chat_history"])
|
| 87 |
|
| 88 |
-
# Initialize
|
| 89 |
try:
|
| 90 |
llm = Together(
|
| 91 |
model="mistralai/Mistral-7B-Instruct-v0.2",
|
| 92 |
-
temperature=0.3,
|
| 93 |
-
max_tokens=512,
|
| 94 |
together_api_key=TOGETHER_AI_API,
|
| 95 |
)
|
| 96 |
except Exception as e:
|
| 97 |
logger.error(f"Error initializing Together API: {e}")
|
| 98 |
-
raise RuntimeError("
|
| 99 |
|
| 100 |
# Initialize conversational retrieval chain
|
| 101 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
@@ -106,42 +88,30 @@ qa = ConversationalRetrievalChain.from_llm(
|
|
| 106 |
combine_docs_chain_kwargs={"prompt": prompt},
|
| 107 |
)
|
| 108 |
|
| 109 |
-
#
|
| 110 |
app = FastAPI()
|
| 111 |
|
| 112 |
-
# Define request and response models
|
| 113 |
class ChatRequest(BaseModel):
|
| 114 |
question: str
|
| 115 |
|
| 116 |
class ChatResponse(BaseModel):
|
| 117 |
answer: str
|
| 118 |
|
| 119 |
-
# Health check endpoint
|
| 120 |
@app.get("/")
|
| 121 |
async def root():
|
| 122 |
-
return {"message": "
|
| 123 |
|
| 124 |
-
# Chat endpoint
|
| 125 |
@app.post("/chat", response_model=ChatResponse)
|
| 126 |
async def chat(request: ChatRequest):
|
| 127 |
try:
|
| 128 |
-
logger.debug(f"User
|
| 129 |
result = qa.invoke(input=request.question)
|
| 130 |
-
logger.debug(f"Retrieved Context: {result.get('context', '')}")
|
| 131 |
-
logger.debug(f"Model Response: {result.get('answer', '')}")
|
| 132 |
-
|
| 133 |
answer = result.get("answer", "The chatbot could not generate a response.")
|
| 134 |
-
confidence_score = result.get("score", 0) # Assuming LLM provides a score
|
| 135 |
-
|
| 136 |
-
if confidence_score < 0.7:
|
| 137 |
-
answer = "The answer is uncertain. Please consult a professional."
|
| 138 |
-
|
| 139 |
return ChatResponse(answer=answer)
|
| 140 |
except Exception as e:
|
| 141 |
logger.error(f"Error during chat invocation: {e}")
|
| 142 |
raise HTTPException(status_code=500, detail="Internal server error")
|
| 143 |
|
| 144 |
-
# Start Uvicorn
|
| 145 |
if __name__ == "__main__":
|
| 146 |
uvicorn.run("main:app", host="0.0.0.0", port=7860)
|
| 147 |
-
|
|
|
|
| 17 |
# Logging configuration
|
| 18 |
logging.basicConfig(level=logging.DEBUG)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
+
logger.debug("Starting application...")
|
| 21 |
|
| 22 |
# Suppress warnings
|
| 23 |
+
warnings.filterwarnings("ignore", message="You are using `torch.load` with `weights_only=False")
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Load environment variables
|
| 26 |
load_dotenv()
|
| 27 |
TOGETHER_AI_API = os.getenv("TOGETHER_AI")
|
| 28 |
HF_HOME = os.getenv("HF_HOME", "./cache")
|
|
|
|
|
|
|
| 29 |
os.environ["HF_HOME"] = HF_HOME
|
|
|
|
|
|
|
| 30 |
if not os.path.exists(HF_HOME):
|
| 31 |
os.makedirs(HF_HOME, exist_ok=True)
|
| 32 |
|
|
|
|
| 33 |
if not TOGETHER_AI_API:
|
| 34 |
+
raise ValueError("TOGETHER_AI_API environment variable is missing.")
|
| 35 |
|
| 36 |
# Initialize embeddings
|
| 37 |
try:
|
|
|
|
| 41 |
)
|
| 42 |
except Exception as e:
|
| 43 |
logger.error(f"Error loading embeddings: {e}")
|
| 44 |
+
raise RuntimeError("Failed to initialize embeddings.")
|
| 45 |
|
| 46 |
+
# Load FAISS vectorstore
|
| 47 |
try:
|
| 48 |
db = FAISS.load_local("ipc_vector_db", embeddings, allow_dangerous_deserialization=True)
|
| 49 |
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5, "score_threshold": 0.8})
|
| 50 |
except Exception as e:
|
| 51 |
logger.error(f"Error loading FAISS vectorstore: {e}")
|
| 52 |
+
loader = DirectoryLoader('./data')
|
| 53 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 54 |
+
documents = text_splitter.split_documents(loader.load())
|
| 55 |
+
db = FAISS.from_documents(documents, embeddings)
|
| 56 |
+
db.save_local("ipc_vector_db")
|
| 57 |
+
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5, "score_threshold": 0.8})
|
| 58 |
+
|
| 59 |
+
# Define prompt template
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
prompt_template = """
|
| 61 |
+
As a legal chatbot specializing in the Indian Penal Code (IPC), provide accurate and concise answers based on the context. Respond only if the answer can be derived from the given context; otherwise, reply: "The information is not available in the provided context." Use professional language.
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
CONTEXT: {context}
|
|
|
|
| 64 |
CHAT HISTORY: {chat_history}
|
|
|
|
| 65 |
QUESTION: {question}
|
|
|
|
| 66 |
ANSWER:
|
| 67 |
"""
|
| 68 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question", "chat_history"])
|
| 69 |
|
| 70 |
+
# Initialize Together API
|
| 71 |
try:
|
| 72 |
llm = Together(
|
| 73 |
model="mistralai/Mistral-7B-Instruct-v0.2",
|
| 74 |
+
temperature=0.3,
|
| 75 |
+
max_tokens=512,
|
| 76 |
together_api_key=TOGETHER_AI_API,
|
| 77 |
)
|
| 78 |
except Exception as e:
|
| 79 |
logger.error(f"Error initializing Together API: {e}")
|
| 80 |
+
raise RuntimeError("Failed to initialize Together API.")
|
| 81 |
|
| 82 |
# Initialize conversational retrieval chain
|
| 83 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
|
|
| 88 |
combine_docs_chain_kwargs={"prompt": prompt},
|
| 89 |
)
|
| 90 |
|
| 91 |
+
# FastAPI backend
|
| 92 |
app = FastAPI()
|
| 93 |
|
|
|
|
| 94 |
class ChatRequest(BaseModel):
|
| 95 |
question: str
|
| 96 |
|
| 97 |
class ChatResponse(BaseModel):
|
| 98 |
answer: str
|
| 99 |
|
|
|
|
| 100 |
@app.get("/")
|
| 101 |
async def root():
|
| 102 |
+
return {"message": "Legal Chatbot is running."}
|
| 103 |
|
|
|
|
| 104 |
@app.post("/chat", response_model=ChatResponse)
|
| 105 |
async def chat(request: ChatRequest):
|
| 106 |
try:
|
| 107 |
+
logger.debug(f"User question: {request.question}")
|
| 108 |
result = qa.invoke(input=request.question)
|
|
|
|
|
|
|
|
|
|
| 109 |
answer = result.get("answer", "The chatbot could not generate a response.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
return ChatResponse(answer=answer)
|
| 111 |
except Exception as e:
|
| 112 |
logger.error(f"Error during chat invocation: {e}")
|
| 113 |
raise HTTPException(status_code=500, detail="Internal server error")
|
| 114 |
|
| 115 |
+
# Start Uvicorn if run directly
|
| 116 |
if __name__ == "__main__":
|
| 117 |
uvicorn.run("main:app", host="0.0.0.0", port=7860)
|
|
|