Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -10,9 +10,9 @@ from langchain_huggingface import HuggingFaceEmbeddings
|
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain.prompts import PromptTemplate
|
|
|
13 |
from langchain.memory import ConversationBufferMemory
|
14 |
from langchain.chains import ConversationalRetrievalChain
|
15 |
-
from langchain.schema import Document
|
16 |
|
17 |
# ==========================
|
18 |
# Logging Configuration
|
@@ -30,12 +30,17 @@ warnings.filterwarnings("ignore", message="You are using `torch.load` with `weig
|
|
30 |
# Load Environment Variables
|
31 |
# ==========================
|
32 |
load_dotenv()
|
|
|
33 |
HF_HOME = os.getenv("HF_HOME", "./cache")
|
34 |
os.environ["HF_HOME"] = HF_HOME
|
35 |
|
36 |
# Ensure the HF_HOME directory exists
|
37 |
os.makedirs(HF_HOME, exist_ok=True)
|
38 |
|
|
|
|
|
|
|
|
|
39 |
# ==========================
|
40 |
# Initialize Embeddings
|
41 |
# ==========================
|
@@ -74,18 +79,32 @@ ANSWER:
|
|
74 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question", "chat_history"])
|
75 |
|
76 |
# ==========================
|
77 |
-
#
|
78 |
# ==========================
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
|
|
|
|
|
|
81 |
qa = ConversationalRetrievalChain.from_llm(
|
82 |
-
llm=
|
83 |
memory=memory,
|
84 |
retriever=db_retriever,
|
85 |
combine_docs_chain_kwargs={"prompt": prompt},
|
|
|
86 |
)
|
87 |
-
|
88 |
-
logger.info("Conversational Retrieval Chain initialized.")
|
89 |
|
90 |
# ==========================
|
91 |
# FastAPI Backend
|
@@ -106,25 +125,16 @@ async def root():
|
|
106 |
async def chat(request: ChatRequest):
|
107 |
try:
|
108 |
logger.debug(f"Received user question: {request.question}")
|
109 |
-
|
110 |
-
# Retrieve relevant documents
|
111 |
-
docs = db_retriever.get_relevant_documents(request.question)
|
112 |
-
if not docs:
|
113 |
-
logger.warning("No relevant documents found.")
|
114 |
-
return ChatResponse(answer="I'm sorry, I couldn't find relevant information for your query.")
|
115 |
-
|
116 |
-
# Log retrieved documents for debugging
|
117 |
-
for i, doc in enumerate(docs, start=1):
|
118 |
-
logger.debug(f"Retrieved Document {i}: {doc.page_content[:500]}...")
|
119 |
-
|
120 |
-
# Invoke the conversational retrieval chain
|
121 |
result = qa.invoke(input=request.question)
|
122 |
-
answer = result.get("answer", "I'm sorry, I couldn't find relevant information for your query.")
|
123 |
|
124 |
-
# Log the
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
126 |
return ChatResponse(answer=answer)
|
127 |
-
|
128 |
except Exception as e:
|
129 |
logger.error(f"Error during chat invocation: {e}")
|
130 |
raise HTTPException(status_code=500, detail="Oops! Something went wrong on our end. Please try again later.")
|
|
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
+
from langchain_together import Together
|
14 |
from langchain.memory import ConversationBufferMemory
|
15 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
16 |
|
17 |
# ==========================
|
18 |
# Logging Configuration
|
|
|
30 |
# Load Environment Variables
|
31 |
# ==========================
|
32 |
load_dotenv()
|
33 |
+
TOGETHER_AI_API = os.getenv("TOGETHER_AI")
|
34 |
HF_HOME = os.getenv("HF_HOME", "./cache")
|
35 |
os.environ["HF_HOME"] = HF_HOME
|
36 |
|
37 |
# Ensure the HF_HOME directory exists
|
38 |
os.makedirs(HF_HOME, exist_ok=True)
|
39 |
|
40 |
+
# Validate required environment variables
|
41 |
+
if not TOGETHER_AI_API:
|
42 |
+
raise ValueError("The TOGETHER_AI_API environment variable is missing. Please set it in your .env file.")
|
43 |
+
|
44 |
# ==========================
|
45 |
# Initialize Embeddings
|
46 |
# ==========================
|
|
|
79 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question", "chat_history"])
|
80 |
|
81 |
# ==========================
|
82 |
+
# Initialize Together API
|
83 |
# ==========================
|
84 |
+
try:
|
85 |
+
llm = Together(
|
86 |
+
model="mistralai/Mistral-7B-Instruct-v0.2",
|
87 |
+
temperature=0.5,
|
88 |
+
max_tokens=1024,
|
89 |
+
together_api_key=TOGETHER_AI_API,
|
90 |
+
)
|
91 |
+
logger.info("Together API successfully initialized.")
|
92 |
+
except Exception as e:
|
93 |
+
logger.error(f"Error initializing Together API: {e}")
|
94 |
+
raise RuntimeError("Something went wrong with the Together API setup. Please verify your API key and configuration.")
|
95 |
|
96 |
+
# ==========================
|
97 |
+
# Conversational Retrieval Chain (RAG Implementation)
|
98 |
+
# ==========================
|
99 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
100 |
qa = ConversationalRetrievalChain.from_llm(
|
101 |
+
llm=llm,
|
102 |
memory=memory,
|
103 |
retriever=db_retriever,
|
104 |
combine_docs_chain_kwargs={"prompt": prompt},
|
105 |
+
return_source_documents=True # This enables logging of retrieved content
|
106 |
)
|
107 |
+
logger.info("Conversational Retrieval Chain initialized with RAG capabilities.")
|
|
|
108 |
|
109 |
# ==========================
|
110 |
# FastAPI Backend
|
|
|
125 |
async def chat(request: ChatRequest):
|
126 |
try:
|
127 |
logger.debug(f"Received user question: {request.question}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
result = qa.invoke(input=request.question)
|
|
|
129 |
|
130 |
+
# Log the retrieved source documents for debugging purposes
|
131 |
+
source_docs = result.get("source_documents")
|
132 |
+
logger.debug(f"Retrieved source documents: {source_docs}")
|
133 |
+
|
134 |
+
answer = result.get("answer")
|
135 |
+
if not answer or "The information is not available in the provided context" in answer:
|
136 |
+
answer = "I'm sorry, I couldn't find relevant information for your query. Please try rephrasing or providing more details."
|
137 |
return ChatResponse(answer=answer)
|
|
|
138 |
except Exception as e:
|
139 |
logger.error(f"Error during chat invocation: {e}")
|
140 |
raise HTTPException(status_code=500, detail="Oops! Something went wrong on our end. Please try again later.")
|