Spaces:
Runtime error
Runtime error
| import tensorflow as tf | |
| from tensorflow.keras import layers, models | |
| class AnomalyDetectionModel: | |
| def __init__(self, input_shape): | |
| self.model = self.build_model(input_shape) | |
| def build_model(self, input_shape): | |
| model = models.Sequential([ | |
| layers.Dense(64, activation='relu', input_shape=(input_shape,)), | |
| layers.Dense(32, activation='relu'), | |
| layers.Dense(16, activation='relu'), | |
| layers.Dense(1, activation='sigmoid') | |
| ]) | |
| model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) | |
| return model | |
| def train(self, X_train, y_train, epochs=10, batch_size=32, validation_split=0.2): | |
| history = self.model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=validation_split) | |
| return history | |
| def evaluate(self, X_test, y_test): | |
| loss, accuracy = self.model.evaluate(X_test, y_test) | |
| return loss, accuracy | |
| # Example usage: | |
| # anomaly_model = AnomalyDetectionModel(X_train.shape[1]) | |
| # history = anomaly_model.train(X_train, y_train) | |
| # loss, accuracy = anomaly_model.evaluate(X_test, y_test) | |
| # print(f'Test Accuracy: {accuracy:.4f}') | |