File size: 5,818 Bytes
2e4274a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# ###########################################################################
#
#  CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
#  (C) Cloudera, Inc. 2022
#  All rights reserved.
#
#  Applicable Open Source License: Apache 2.0
#
#  NOTE: Cloudera open source products are modular software products
#  made up of hundreds of individual components, each of which was
#  individually copyrighted.  Each Cloudera open source product is a
#  collective work under U.S. Copyright Law. Your license to use the
#  collective work is as provided in your written agreement with
#  Cloudera.  Used apart from the collective work, this file is
#  licensed for your use pursuant to the open source license
#  identified above.
#
#  This code is provided to you pursuant a written agreement with
#  (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
#  this code. If you do not have a written agreement with Cloudera nor
#  with an authorized and properly licensed third party, you do not
#  have any rights to access nor to use this code.
#
#  Absent a written agreement with Cloudera, Inc. (โ€œClouderaโ€) to the
#  contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
#  KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
#  WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
#  IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
#  FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
#  AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
#  ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
#  OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
#  CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
#  RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
#  BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
#  DATA.
#
# ###########################################################################

import torch
from transformers_interpret import SequenceClassificationExplainer
from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification,
)

from apps.visualization_utils import visualize_text

class CustomSequenceClassificationExplainer(SequenceClassificationExplainer):
    """
    Subclassing to replace `visualize()` method with custom styling.

    Namely, removing a few columns, styling fonts, and re-arrangning legend position.
    """

    def visualize(self, html_filepath: str = None, true_class: str = None):
        """
        Visualizes word attributions. If in a notebook table will be displayed inline.
        Otherwise pass a valid path to `html_filepath` and the visualization will be saved
        as a html file.
        If the true class is known for the text that can be passed to `true_class`
        """
        tokens = [token.replace("ฤ ", "") for token in self.decode(self.input_ids)]
        attr_class = self.id2label[self.selected_index]

        if self._single_node_output:
            if true_class is None:
                true_class = round(float(self.pred_probs))
            predicted_class = round(float(self.pred_probs))
            attr_class = round(float(self.pred_probs))
        else:
            if true_class is None:
                true_class = self.selected_index
            predicted_class = self.predicted_class_name

        score_viz = self.attributions.visualize_attributions(  # type: ignore
            self.pred_probs,
            predicted_class,
            true_class,
            attr_class,
            tokens,
        )

        # NOTE: here is the overwritten function
        html = visualize_text([score_viz])

        if html_filepath:
            if not html_filepath.endswith(".html"):
                html_filepath = html_filepath + ".html"
            with open(html_filepath, "w") as html_file:
                html_file.write(html.data)

        return html


class InterpretTransformer:
    """
    Utility for visualizing word attribution scores from Transformer models.

    This class utilizes the [Transformers Interpret](https://github.com/cdpierse/transformers-interpret)
    libary to calculate word attributions using a techinique called Integrated Gradients.

    Attributes:
        cls_model_identifier (str)

    """

    def __init__(self, cls_model_identifier: str):

        self.cls_model_identifier = cls_model_identifier
        self.device = (
            torch.cuda.current_device() if torch.cuda.is_available() else "cpu"
        )

        self._initialize_hf_artifacts()

    def _initialize_hf_artifacts(self):
        """
        Initialize a HuggingFace artifacts (tokenizer and model) according
        to the provided identifiers for both SBert and the classification model.
        Then initialize the word attribution explainer with the HF model+tokenizer.

        """

        # classifer
        self.cls_tokenizer = AutoTokenizer.from_pretrained(self.cls_model_identifier)
        self.cls_model = AutoModelForSequenceClassification.from_pretrained(
            self.cls_model_identifier
        )
        self.cls_model.to(self.device)

        # transformers interpret
        self.explainer = CustomSequenceClassificationExplainer(
            self.cls_model, self.cls_tokenizer
        )

    def visualize_feature_attribution_scores(self, text: str, class_index: int = 0):
        """
        Calculates and visualizes feature attributions using integrated gradients.

        Args:
            text (str) - text to get attributions for
            class_index (int) - Optional output index to provide attributions for

        """
        self.explainer(text, index=class_index)
        return self.explainer.visualize()