datasets-ai / app.py
Caleb Fahlgren
add llm for generating sql
13e0d1b
raw
history blame
3.11 kB
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import HfApi
import pandas as pd
import gradio as gr
import duckdb
import requests
import llama_cpp
import instructor
from pydantic import BaseModel
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
view_name = "dataset_view"
hf_api = HfApi()
conn = duckdb.connect()
llama = llama_cpp.Llama(
model_path="Hermes-2-Pro-Llama-3-8B-Q8_0.gguf",
n_gpu_layers=-1,
chat_format="chatml",
n_ctx=2048,
verbose=False,
)
create = instructor.patch(
create=llama.create_chat_completion_openai_v1,
mode=instructor.Mode.JSON_SCHEMA,
)
class SQLResponse(BaseModel):
sql: str
def get_dataset_ddl(dataset_id: str) -> str:
response = requests.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset_id}")
response.raise_for_status() # Check if the request was successful
first_parquet = response.json().get("parquet_files", [])[0]
first_parquet_url = first_parquet.get("url")
if not first_parquet_url:
raise ValueError("No valid URL found for the first parquet file.")
conn.execute(
f"CREATE OR REPLACE VIEW {view_name} as SELECT * FROM read_parquet('{first_parquet_url}');"
)
dataset_ddl = conn.execute(f"PRAGMA table_info('{view_name}');").fetchall()
column_data_types = ",\n\t".join(
[f"{column[1]} {column[2]}" for column in dataset_ddl]
)
sql_ddl = """
CREATE TABLE {} (
{}
);
""".format(
view_name, column_data_types
)
return sql_ddl
def generate_sql(dataset_id: str, query: str) -> str:
ddl = get_dataset_ddl(dataset_id)
system_prompt = f"""
You are an expert SQL assistant with access to the following DuckDB Table:
```sql
{ddl}
```
Please assist the user by writing a SQL query that answers the user's question.
"""
resp: SQLResponse = create(
model="Hermes-2-Pro-Llama-3-8B",
messages=[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": query,
},
],
response_model=SQLResponse,
)
return resp.sql
def query_dataset(dataset_id: str, query: str) -> tuple[pd.DataFrame, str]:
sql_query = generate_sql(dataset_id, query)
df = conn.execute(sql_query).fetchdf()
markdown_output = f"""```sql\n{sql_query}```"""
return df, markdown_output
with gr.Blocks() as demo:
gr.Markdown("# Query your HF Datasets with Natural Language πŸ“ˆπŸ“Š")
dataset_id = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Find your favorite dataset...",
search_type="dataset",
value="jamescalam/world-cities-geo",
)
user_query = gr.Textbox("", label="Ask anything...")
btn = gr.Button("Ask πŸͺ„")
df = gr.DataFrame()
sql_query = gr.Markdown(label="Output SQL Query")
btn.click(
query_dataset,
inputs=[dataset_id, user_query],
outputs=[df, sql_query],
)
if __name__ == "__main__":
demo.launch()