nielsr HF staff commited on
Commit
f61d812
·
1 Parent(s): b8c788a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -57
app.py CHANGED
@@ -9,23 +9,11 @@ torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/0000000397
9
  torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
10
  torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
11
 
12
- # git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
13
- # git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
14
-
15
  git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
16
- git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
17
-
18
- # git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
19
- # git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
20
-
21
- # blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
22
- # blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
23
 
24
  blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
25
- blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
26
-
27
- # blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
28
- # blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
29
 
30
  blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
31
  blip2_model_4_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
@@ -33,33 +21,15 @@ blip2_model_4_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/bl
33
  instructblip_processor = AutoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
34
  instructblip_model_4_bit = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
35
 
36
- # vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
37
- # vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
38
- # vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
39
-
40
- # coca_model, _, coca_transform = open_clip.create_model_and_transforms(
41
- # model_name="coca_ViT-L-14",
42
- # pretrained="mscoco_finetuned_laion2B-s13B-b90k"
43
- # )
44
-
45
  device = "cuda" if torch.cuda.is_available() else "cpu"
46
 
47
- # git_model_base.to(device)
48
- # blip_model_base.to(device)
49
- git_model_large_coco.to(device)
50
- # git_model_large_textcaps.to(device)
51
- blip_model_large.to(device)
52
- # vitgpt_model.to(device)
53
- # coca_model.to(device)
54
- # blip2_model.to(device)
55
-
56
  def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
57
  inputs = processor(images=image, return_tensors="pt").to(device)
58
 
59
  if use_float_16:
60
  inputs = inputs.to(torch.float16)
61
 
62
- generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
63
 
64
  if tokenizer is not None:
65
  generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
@@ -69,45 +39,28 @@ def generate_caption(processor, model, image, tokenizer=None, use_float_16=False
69
  return generated_caption
70
 
71
 
72
- def generate_caption_coca(model, transform, image):
73
- im = transform(image).unsqueeze(0).to(device)
74
- with torch.no_grad(), torch.cuda.amp.autocast():
75
- generated = model.generate(im, seq_len=20)
76
- return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "")
77
-
78
-
79
- def generate_caption_instructblip(processor, model, image):
80
  prompt = "Generate a caption for the image:"
81
 
82
  inputs = processor(images=image, text=prompt, return_tensors="pt").to(device=device, torch_dtype=torch.float16)
83
 
84
  generated_ids = model.generate(pixel_values=inputs.pixel_values,
85
- num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1)
86
- generated_ids[generated_ids == 0] = 2 # TODO remove once https://github.com/huggingface/transformers/pull/24492 is merged
 
 
87
 
88
  return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
89
 
90
 
91
  def generate_captions(image):
92
- # caption_git_base = generate_caption(git_processor_base, git_model_base, image)
93
-
94
  caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
95
 
96
- # caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
97
-
98
- # caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
99
-
100
  caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
101
 
102
- # caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
103
-
104
- # caption_coca = generate_caption_coca(coca_model, coca_transform, image)
105
-
106
- # caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
107
-
108
- caption_blip2_8_bit = generate_caption(blip2_processor, blip2_model_8_bit, image, use_float_16=True).strip()
109
 
110
- caption_instructblip_4_bit = generate_caption_instructblip(instructblip_processor, instructblip_model_4_bit, image)
111
 
112
  return caption_git_large_coco, caption_blip_large, caption_blip2_8_bit, caption_instructblip_4_bit
113
 
 
9
  torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
10
  torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
11
 
 
 
 
12
  git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
13
+ git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco", device_map="auto")
 
 
 
 
 
 
14
 
15
  blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
16
+ blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", device_map="auto")
 
 
 
17
 
18
  blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
19
  blip2_model_4_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
 
21
  instructblip_processor = AutoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
22
  instructblip_model_4_bit = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
23
 
 
 
 
 
 
 
 
 
 
24
  device = "cuda" if torch.cuda.is_available() else "cpu"
25
 
 
 
 
 
 
 
 
 
 
26
  def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
27
  inputs = processor(images=image, return_tensors="pt").to(device)
28
 
29
  if use_float_16:
30
  inputs = inputs.to(torch.float16)
31
 
32
+ generated_ids = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5)
33
 
34
  if tokenizer is not None:
35
  generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 
39
  return generated_caption
40
 
41
 
42
+ def generate_caption_blip2(processor, model, image, replace_token=False):
 
 
 
 
 
 
 
43
  prompt = "Generate a caption for the image:"
44
 
45
  inputs = processor(images=image, text=prompt, return_tensors="pt").to(device=device, torch_dtype=torch.float16)
46
 
47
  generated_ids = model.generate(pixel_values=inputs.pixel_values,
48
+ num_beams=5, max_length=50, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1)
49
+ if replace_token:
50
+ # TODO remove once https://github.com/huggingface/transformers/pull/24492 is merged
51
+ generated_ids[generated_ids == 0] = 2
52
 
53
  return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
54
 
55
 
56
  def generate_captions(image):
 
 
57
  caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
58
 
 
 
 
 
59
  caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
60
 
61
+ caption_blip2_8_bit = generate_caption_blip2(blip2_processor, blip2_model_8_bit, image).strip()
 
 
 
 
 
 
62
 
63
+ caption_instructblip_4_bit = generate_caption_blip2(instructblip_processor, instructblip_model_4_bit, image)
64
 
65
  return caption_git_large_coco, caption_blip_large, caption_blip2_8_bit, caption_instructblip_4_bit
66