nielsr HF staff commited on
Commit
b713d8f
·
1 Parent(s): a80eab0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -25,12 +25,13 @@ vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image
25
  vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
26
  vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
27
 
28
- filepath = hf_hub_download(repo_id="gpucce/CoCa", filename="laion2B-s13B-b90k-mscoco-2014.pt", repo_type="space")
 
29
 
30
- coca_model, _, coca_transform = open_clip.create_model_and_transforms(
31
- "coca_ViT-L-14",
32
- pretrained=filepath,
33
- )
34
 
35
  device = "cuda" if torch.cuda.is_available() else "cpu"
36
 
@@ -39,7 +40,7 @@ blip_model_base.to(device)
39
  git_model_large.to(device)
40
  blip_model_large.to(device)
41
  vitgpt_model.to(device)
42
- coca_model.to(device)
43
 
44
  def generate_caption(processor, model, image, tokenizer=None):
45
  inputs = processor(images=image, return_tensors="pt").to(device)
@@ -71,13 +72,13 @@ def generate_captions(image):
71
 
72
  caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
73
 
74
- caption_coca = generate_caption_coca(coca_model, coca_transform, image)
75
 
76
- return caption_git_base, caption_git_large, caption_blip_base, caption_blip_large, caption_vitgpt, caption_coca
77
 
78
 
79
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
80
- outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Caption generated by GIT-large"), gr.outputs.Textbox(label="Caption generated by BLIP-base"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by ViT+GPT-2"), gr.outputs.Textbox(label="Caption generated by CoCa")]
81
 
82
  title = "Interactive demo: comparing image captioning models"
83
  description = "Gradio Demo to compare GIT, BLIP and ViT+GPT2, 3 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
 
25
  vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
26
  vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
27
 
28
+ # not using CoCa for the moment as it requires too much RAM
29
+ # filepath = hf_hub_download(repo_id="gpucce/CoCa", filename="laion2B-s13B-b90k-mscoco-2014.pt", repo_type="space")
30
 
31
+ # coca_model, _, coca_transform = open_clip.create_model_and_transforms(
32
+ # "coca_ViT-L-14",
33
+ # pretrained=filepath,
34
+ # )
35
 
36
  device = "cuda" if torch.cuda.is_available() else "cpu"
37
 
 
40
  git_model_large.to(device)
41
  blip_model_large.to(device)
42
  vitgpt_model.to(device)
43
+ # coca_model.to(device)
44
 
45
  def generate_caption(processor, model, image, tokenizer=None):
46
  inputs = processor(images=image, return_tensors="pt").to(device)
 
72
 
73
  caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
74
 
75
+ # caption_coca = generate_caption_coca(coca_model, coca_transform, image)
76
 
77
+ return caption_git_base, caption_git_large, caption_blip_base, caption_blip_large, caption_vitgpt
78
 
79
 
80
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
81
+ outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Caption generated by GIT-large"), gr.outputs.Textbox(label="Caption generated by BLIP-base"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by ViT+GPT-2")]
82
 
83
  title = "Interactive demo: comparing image captioning models"
84
  description = "Gradio Demo to compare GIT, BLIP and ViT+GPT2, 3 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."