Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -27,6 +27,9 @@ blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip
|
|
27 |
blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
28 |
blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
|
29 |
|
|
|
|
|
|
|
30 |
# vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
31 |
# vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
32 |
# vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
@@ -87,11 +90,13 @@ def generate_captions(image):
|
|
87 |
|
88 |
caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
|
89 |
|
90 |
-
|
|
|
|
|
91 |
|
92 |
|
93 |
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
94 |
-
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 2.7b")]
|
95 |
|
96 |
title = "Interactive demo: comparing image captioning models"
|
97 |
description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|
|
|
27 |
blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
28 |
blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
|
29 |
|
30 |
+
blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
|
31 |
+
blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
|
32 |
+
|
33 |
# vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
34 |
# vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
35 |
# vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
|
|
90 |
|
91 |
caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
|
92 |
|
93 |
+
caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
|
94 |
+
|
95 |
+
return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2, caption_blip2_8_bit
|
96 |
|
97 |
|
98 |
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
99 |
+
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 2.7b"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
|
100 |
|
101 |
title = "Interactive demo: comparing image captioning models"
|
102 |
description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|