nielsr HF staff commited on
Commit
336c80c
·
1 Parent(s): ef34b5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -27,6 +27,9 @@ blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip
27
  blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
28
  blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
29
 
 
 
 
30
  # vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
31
  # vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
32
  # vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
@@ -87,11 +90,13 @@ def generate_captions(image):
87
 
88
  caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
89
 
90
- return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2
 
 
91
 
92
 
93
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
94
- outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 2.7b")]
95
 
96
  title = "Interactive demo: comparing image captioning models"
97
  description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
 
27
  blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
28
  blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
29
 
30
+ blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
31
+ blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
32
+
33
  # vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
34
  # vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
35
  # vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
 
90
 
91
  caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
92
 
93
+ caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
94
+
95
+ return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2, caption_blip2_8_bit
96
 
97
 
98
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
99
+ outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 2.7b"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
100
 
101
  title = "Interactive demo: comparing image captioning models"
102
  description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."