nielsr HF staff commited on
Commit
2d29620
·
1 Parent(s): 0599514

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -14
app.py CHANGED
@@ -9,14 +9,17 @@ torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/0000000397
9
  torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
10
  torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
11
 
12
- git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
13
- git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
14
 
15
- git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-coco")
16
- git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
17
 
18
- blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
19
- blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
 
 
 
20
 
21
  blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
22
  blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
@@ -32,9 +35,10 @@ coca_model, _, coca_transform = open_clip.create_model_and_transforms(
32
 
33
  device = "cuda" if torch.cuda.is_available() else "cpu"
34
 
35
- git_model_base.to(device)
36
- blip_model_base.to(device)
37
- git_model_large.to(device)
 
38
  blip_model_large.to(device)
39
  vitgpt_model.to(device)
40
  coca_model.to(device)
@@ -60,11 +64,13 @@ def generate_caption_coca(model, transform, image):
60
 
61
 
62
  def generate_captions(image):
63
- caption_git_base = generate_caption(git_processor_base, git_model_base, image)
 
 
64
 
65
- caption_git_large = generate_caption(git_processor_large, git_model_large, image)
66
 
67
- caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
68
 
69
  caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
70
 
@@ -72,11 +78,11 @@ def generate_captions(image):
72
 
73
  caption_coca = generate_caption_coca(coca_model, coca_transform, image)
74
 
75
- return caption_git_base, caption_git_large, caption_blip_base, caption_blip_large, caption_vitgpt, caption_coca
76
 
77
 
78
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
79
- outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Caption generated by GIT-large"), gr.outputs.Textbox(label="Caption generated by BLIP-base"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by ViT+GPT-2"), gr.outputs.Textbox(label="Caption generated by CoCa")]
80
 
81
  title = "Interactive demo: comparing image captioning models"
82
  description = "Gradio Demo to compare GIT, BLIP, ViT+GPT2 and CoCa, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
 
9
  torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
10
  torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
11
 
12
+ # git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
13
+ # git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
14
 
15
+ git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
16
+ git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
17
 
18
+ git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
19
+ git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
20
+
21
+ # blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
22
+ # blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
23
 
24
  blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
25
  blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
 
35
 
36
  device = "cuda" if torch.cuda.is_available() else "cpu"
37
 
38
+ # git_model_base.to(device)
39
+ # blip_model_base.to(device)
40
+ git_model_large_coco.to(device)
41
+ git_model_large_textcaps.to(device)
42
  blip_model_large.to(device)
43
  vitgpt_model.to(device)
44
  coca_model.to(device)
 
64
 
65
 
66
  def generate_captions(image):
67
+ # caption_git_base = generate_caption(git_processor_base, git_model_base, image)
68
+
69
+ caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
70
 
71
+ caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
72
 
73
+ # caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
74
 
75
  caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
76
 
 
78
 
79
  caption_coca = generate_caption_coca(coca_model, coca_transform, image)
80
 
81
+ return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_vitgpt, caption_coca
82
 
83
 
84
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
85
+ outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by ViT+GPT-2"), gr.outputs.Textbox(label="Caption generated by CoCa")]
86
 
87
  title = "Interactive demo: comparing image captioning models"
88
  description = "Gradio Demo to compare GIT, BLIP, ViT+GPT2 and CoCa, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."