File size: 2,507 Bytes
46f5320
0128fae
46f5320
 
cba490f
46f5320
 
 
 
05912c7
 
cba490f
6784f95
cba490f
 
 
46f5320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335cdd4
cba490f
335cdd4
 
 
 
 
 
 
 
 
 
 
 
 
3cffb60
 
335cdd4
 
 
 
6784f95
335cdd4
 
 
 
 
 
 
 
6784f95
0128fae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
"""

from dotenv import load_dotenv
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from mathtext.sentiment import sentiment
from mathtext.text2int import text2int
from pydantic import BaseModel

from mathtext_fastapi.nlu import prepare_message_data_for_logging

load_dotenv()

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="templates")


class Text(BaseModel):
    content: str = ""


@app.get("/")
def home(request: Request):
    return templates.TemplateResponse("home.html", {"request": request})


@app.post("/hello")
def hello(content: Text = None):
    content = {"message": f"Hello {content.content}!"}
    return JSONResponse(content=content)


@app.post("/sentiment-analysis")
def sentiment_analysis_ep(content: Text = None):
    ml_response = sentiment(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/text2int")
def text2int_ep(content: Text = None):
    ml_response = text2int(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/nlu")
async def evaluate_user_message_with_nlu_api(request: Request):
    """ Calls NLU APIs on the most recent user message from Turn.io message data and logs the message data

    Input
    - request.body: a json object of message data for the most recent user response

    Output
    - int_data_dict or sent_data_dict: A dictionary telling the type of NLU run and the resulting data
      {'type':'integer', 'data': '8'}
      {'type':'sentiment', 'data': 'negative'}
    """

    data_dict = await request.json()
    message_data = data_dict.get('message_data', '')
    message_text = message_data['message']['text']['body'].lower()

    int_api_resp = text2int(message_text)

    if int_api_resp == 32202:
        sentiment_api_resp = sentiment(message_text)
        # [{'label': 'POSITIVE', 'score': 0.991188645362854}]
        sent_data_dict = {'type': 'sentiment', 'data': sentiment_api_resp[0]['label']}
        return JSONResponse(content={'type': 'sentiment', 'data': 'negative'})

    prepare_message_data_for_logging(message_data)

    int_data_dict = {'type': 'integer', 'data': int_api_resp}

    return JSONResponse(content=int_data_dict)