Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ model = SentenceTransformer('neuml/pubmedbert-base-embeddings')
|
|
14 |
with open("embeddings_1.pkl", "rb") as fIn:
|
15 |
stored_data = pickle.load(fIn)
|
16 |
stored_code = stored_data["SBS_code"]
|
17 |
-
stored_sentences = stored_data["
|
18 |
stored_embeddings = stored_data["embeddings"]
|
19 |
|
20 |
import streamlit as st
|
@@ -28,7 +28,7 @@ def mapping_code(user_input):
|
|
28 |
similarities.append(similarity)
|
29 |
|
30 |
# Combine similarity scores with 'code' and 'description'
|
31 |
-
result = list(zip(stored_data["SBS_code"],stored_data["
|
32 |
|
33 |
# Sort results by similarity scores
|
34 |
result.sort(key=lambda x: x[2], reverse=True)
|
|
|
14 |
with open("embeddings_1.pkl", "rb") as fIn:
|
15 |
stored_data = pickle.load(fIn)
|
16 |
stored_code = stored_data["SBS_code"]
|
17 |
+
stored_sentences = stored_data["Description"]
|
18 |
stored_embeddings = stored_data["embeddings"]
|
19 |
|
20 |
import streamlit as st
|
|
|
28 |
similarities.append(similarity)
|
29 |
|
30 |
# Combine similarity scores with 'code' and 'description'
|
31 |
+
result = list(zip(stored_data["SBS_code"],stored_data["Description"], similarities))
|
32 |
|
33 |
# Sort results by similarity scores
|
34 |
result.sort(key=lambda x: x[2], reverse=True)
|