File size: 822 Bytes
d5de0c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from transformers import pipeline
import gradio as gr

pipe = pipeline(
    "audio-classification", model="ceefax/distilhubert-finetuned-gtzan"
)

model_id = "ceefax/distilhubert-finetuned-gtzan"
pipe = pipeline("audio-classification", model=model_id)
title = "Genre Classifier"
description = "Genre classifier trained on GTZAN"
# examples = ['/content/Trumpet_to_ambient_music.wav']
interpretation='default'
enable_queue=True

def classify_audio(filepath):
    preds = pipe(filepath)
    outputs = {}
    for p in preds:
        outputs[p["label"]] = p["score"]
    return outputs

demo = gr.Interface(
    fn=classify_audio, inputs=gr.Audio(type="filepath"), outputs=gr.outputs.Label(), title=title,description=description
    # ,examples=examples
    ,interpretation=interpretation,enable_queue=enable_queue
).launch()