Spaces:
Sleeping
Sleeping
File size: 13,723 Bytes
a85053a 18a8000 58177c7 d9ca927 2280005 bbeab9b 58177c7 66eb77a da2ba5e 6c2c317 54e890b 66eb77a 1b000cf 0c46341 58177c7 a85053a 0c46341 18a8000 58177c7 18a8000 a85053a 2280005 18a8000 2280005 18a8000 2280005 1b000cf 558419d 2280005 18a8000 2280005 a85053a 18a8000 a85053a 2280005 a85053a 147ef8e d9ca927 a85053a 18a8000 d9ca927 936af6a 18a8000 936af6a 147ef8e 936af6a 18a8000 147ef8e 18a8000 147ef8e 18a8000 936af6a fd688be 74e830b 18a8000 fd688be 936af6a 18a8000 8dfb426 a7334d4 147ef8e 8dfb426 147ef8e a7334d4 18a8000 a7334d4 18a8000 fd688be 18a8000 a7334d4 18a8000 fd688be 18a8000 a7334d4 18a8000 a7334d4 18a8000 fd688be 18a8000 a7334d4 936af6a 18a8000 a7334d4 fd688be 18a8000 a7334d4 18a8000 fd688be 18a8000 bbeab9b 0e7a69a bbeab9b 0e7a69a bbeab9b 0e7a69a bbeab9b 0e7a69a 2151157 bbeab9b 0e7a69a bbeab9b 2151157 bbeab9b 18a8000 147ef8e 18a8000 cf4692a 83baedc 18a8000 ca620b9 18a8000 e0899de 147ef8e 18a8000 6c2c317 d9ca927 18a8000 f430c84 d9ca927 18a8000 a85053a 0c46341 2151157 0c46341 2151157 0c46341 2151157 0c46341 a85053a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import gradio as gr
import pandas as pd
from pathlib import Path
from zipfile import ZipFile
import io
import contextlib
import requests
import random
from functools import lru_cache
import plotly.express as px
FORBIDDEN_NAMES ={"Judas",
"Judas Iscariot"
"Maher-shalal-hash-baz",
"Bathsheba",
"Jephthah",
"Jehoshaphat",
"Tiebreaker",
"Boanerges",
"Jezebel",
"Gomorrah",
"Hymenaeus",
"Herod",
"Pilate",
"Doeg",
"Ziph",
"Phygelus",
"Hermogenes",
"Philetus",
"Balaam",
"Achan",
"Caiaphas",
"Pontius",
"Ahab",
"Manasseh",
"Rehoboam",
"Nebuchadnezzar",
"Delilah",
"Lo-ammi",
"Lo-ruhamah",
"Beelzebub",
"Ichabod",
"Saphira",
"Jushab-hesed",
"Benjarman",
"Cain",
"Esau",
"Machiavelli", # found
"Barabbas",
"Sapphira",
"Shur",
"Pontius Pilate"
}
# --- File download & setup ---
def download_file(url: str, dest_path: Path):
if dest_path.exists():
print(f"{dest_path.name} already exists. Skipping download.")
return
print(f"Downloading {url}")
response = requests.get(url)
response.raise_for_status()
with open(dest_path, "wb") as f:
f.write(response.content)
print(f"Saved to {dest_path}")
def extract_names_zip():
zip_path = Path("names.zip")
if not zip_path.exists():
raise FileNotFoundError("names.zip not found. Please upload it manually to the repo.")
with ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(".")
print("Unzipped names.zip")
extract_names_zip()
# Download Bible CSVs if missing
download_file(
"https://raw.githubusercontent.com/BradyStephenson/bible-data/refs/heads/main/BibleData-Person.csv",
Path("BibleData-Person.csv"),
)
download_file(
"https://raw.githubusercontent.com/BradyStephenson/bible-data/refs/heads/main/BibleData-PersonLabel.csv",
Path("BibleData-PersonLabel.csv"),
)
# --- Load datasets ---
ssa_name_txt_files = sorted(Path(".").glob("yob*.txt"))
@lru_cache(maxsize=1)
def load_all_ssa_names():
dfs = []
for f in ssa_name_txt_files:
year = int(f.stem.replace("yob", ""))
df = pd.read_csv(f, names=["name", "sex", "count"])
df["year"] = year
dfs.append(df)
full_df = pd.concat(dfs, ignore_index=True)
return full_df
@lru_cache
def load_ssa_names(min_year=0, max_year=9999):
full_df = load_all_ssa_names()
filtered_df = full_df[(full_df["year"] >= min_year) & (full_df["year"] <= max_year)]
if filtered_df.empty:
return pd.DataFrame(), pd.DataFrame()
agg_df = (
filtered_df
.groupby(["name", "sex"], as_index=False)["count"]
.sum()
.sort_values("count", ascending=False)
)
return filtered_df, agg_df
def load_bible_names():
bible_names_df = pd.read_csv("BibleData-Person.csv")
bible_names_personlabel_df = pd.read_csv("BibleData-PersonLabel.csv")
bible_names_personlabel_df = bible_names_personlabel_df.merge(bible_names_df[["person_id", "sex"]], on="person_id", how="left")
bible_names_personlabel_df = bible_names_personlabel_df[bible_names_personlabel_df["label_type"] == "proper name"]
bible_names_personlabel_df["sex"] = bible_names_personlabel_df["sex"].replace({"male": "M", "female": "F"})
return bible_names_personlabel_df
bible_names_personlabel_df = load_bible_names()
# --- Name generation logic ---
last_names = ["Smith", "Johnson", "Williams", "Taylor", "Brown"]
def get_normal_and_bible(
# ssa_names_aggregated_df,
bible_names_df,
min_length_ssa=3,
max_length_ssa=8,
min_length_bible=3,
max_length_bible=8,
min_year_ssa=0,
max_year_ssa=9999,
ssa_popularity_percentile=(0.95, 1.0),
sex=None,
forbidden_names=None,
ssa_names_col="name",
bible_names_col="english_label",
debug=False,
):
if forbidden_names is None:
forbidden_names = set()
ssa_names_df, ssa_names_aggregated_df = load_ssa_names(min_year=min_year_ssa, max_year=max_year_ssa)
if debug:
print(f"There are {len(ssa_names_aggregated_df)} SSA names from the years {min_year_ssa} to {max_year_ssa}")
filtered_ssa = ssa_names_aggregated_df.copy()
filtered_ssa = filtered_ssa[~filtered_ssa[ssa_names_col].isin(forbidden_names)]
if debug:
print(f"SSA names after FORBIDDEN NAMES filter: {len(filtered_ssa)}")
filtered_ssa = filtered_ssa[
filtered_ssa[ssa_names_col].str.len().between(min_length_ssa, max_length_ssa)
]
if sex:
filtered_ssa = filtered_ssa[filtered_ssa["sex"] == sex]
if debug:
print(f"SSA names after length/sex filter: {len(filtered_ssa)}")
total = len(filtered_ssa)
filtered_ssa = filtered_ssa.sort_values("count")
low, high = ssa_popularity_percentile
idx_start = int(total * low)
idx_end = int(total * high)
filtered_ssa = filtered_ssa.iloc[idx_start:idx_end]
if debug:
print(f"SSA names after popularity percentile slice: {len(filtered_ssa)}")
ssa_name = filtered_ssa.sample(1)[ssa_names_col].values[0]
# ------------
# Bible names
filtered_bible = bible_names_df.copy()
if debug:
print(f"Bible names before filtering: {len(filtered_bible)}")
filtered_bible = filtered_bible[
filtered_bible[bible_names_col].str.len().between(min_length_bible, max_length_bible)
]
if debug:
print(f"Bible names after lengthfiltering: {len(filtered_bible)}")
if sex:
filtered_bible = filtered_bible[filtered_bible["sex"] == sex]
if debug:
print(f"Bible names after sex filtering: {len(filtered_bible)}")
filtered_bible = filtered_bible[~filtered_bible[bible_names_col].isin(forbidden_names)]
if debug:
print(f"Bible names after FORBIDDEN NAMES filtering: {len(filtered_bible)}")
if len(filtered_bible) == 0 or len(filtered_ssa) == 0:
raise ValueError("No valid names found after filtering.")
bible_name = filtered_bible.sample(1)[bible_names_col].values[0]
return ssa_name, bible_name
# -------------------- Plotting ---
import plotly.graph_objects as go
def plot_name_trends_plotly(df, names, start_year=None, end_year=None, logscale=False):
name_df = df[df["name"].isin(names)]
if start_year is not None:
name_df = name_df[name_df["year"] >= start_year]
if end_year is not None:
name_df = name_df[name_df["year"] <= end_year]
if name_df.empty:
raise gr.Error("No data for selected names and year range.")
agg_df = (
name_df.groupby(["year", "name"])["count"]
.sum()
.reset_index()
)
# Build figure manually for better control
fig = go.Figure()
for name in sorted(agg_df["name"].unique()):
sub_df = agg_df[agg_df["name"] == name]
if len(sub_df) > 1:
fig.add_trace(go.Scatter(
x=sub_df["year"],
y=sub_df["count"],
mode="lines+markers",
name=name
))
else:
# Jessca
fig.add_trace(go.Scatter(
x=sub_df["year"],
y=sub_df["count"],
mode="markers",
name=name,
marker=dict(size=10, symbol="circle"),
))
fig.update_layout(
title="Name Usage Over Time",
xaxis_title="Year",
yaxis_title="Count",
height=500,
yaxis_type="log" if logscale else "linear",
)
return fig, agg_df
def plot_from_inputs(name_text, start_year, end_year, logscale):
names = [n.strip() for n in name_text.split(",") if n.strip()]
if not names:
raise gr.Error("Please enter at least one name.")
full_df = load_all_ssa_names()
return plot_name_trends_plotly(full_df, names, start_year, end_year, logscale)
# --- Gradio app ---
def generate_names(n, sex, ssa_min_len, ssa_max_len,
ssa_min_year,
ssa_max_year,
min_bible_len, max_bible_len, pop_low, pop_high, debug_flag, last, forbidden_names_text, bible_names_first_flag):
results = []
debug_output = io.StringIO()
forbidden_names = set(name.strip() for name in forbidden_names_text.split(",") if name.strip())
with contextlib.redirect_stdout(debug_output):
for i in range(n):
try:
normal, bible = get_normal_and_bible(
bible_names_personlabel_df,
min_length_ssa=ssa_min_len,
max_length_ssa=ssa_max_len,
min_year_ssa=ssa_min_year,
max_year_ssa=ssa_max_year,
min_length_bible=min_bible_len,
max_length_bible=max_bible_len,
ssa_popularity_percentile=(pop_low, pop_high),
sex=sex if sex in {"M", "F"} else None,
forbidden_names=forbidden_names,
debug=(i==0 and debug_flag),
)
if last is None:
last = random.choice(last_names)
if bible_names_first_flag:
first = bible
middle = normal
else:
first=normal
middle = bible
results.append(f"{first} {middle} {last}")
except Exception as e:
results.append(f"[Error: {e}]")
return "\n".join(results), debug_output.getvalue()
with gr.Blocks() as demo:
with gr.Tabs():
with gr.Tab("🔀 Generate Names"):
gr.Markdown("# 📜 Random Bible + SSA Name Generator")
with gr.Row():
n_slider = gr.Slider(1, 20, value=5, step=1, label="How many names?")
sex_choice = gr.Radio(["M", "F", "Any"], label="Sex", value="Any")
with gr.Row():
ssa_min_len = gr.Slider(1, 40, value=1, step=1, label="SSA name min length")
ssa_max_len = gr.Slider(1, 40, value=40, step=1, label="SSA name max length")
with gr.Row():
ssa_min_year = gr.Slider(1880, 2024, value=1880, step=1, label="SSA name min year")
ssa_max_year = gr.Slider(1880, 2024, value=2024, step=1, label="SSA name max year")
with gr.Row():
bible_len = gr.Slider(1, 40, value=1, step=1, label="Bible name min length")
bible_max_len = gr.Slider(1, 40, value=40, step=1, label="Bible name max length")
with gr.Row():
pop_low_slider = gr.Slider(0.0, 1.0, value=0.95, step=0.01, label="SSA Popularity: Low Percentile")
pop_high_slider = gr.Slider(0.0, 1.0, value=1.0, step=0.01, label="SSA Popularity: High Percentile")
with gr.Row():
last_name_input = gr.Textbox(label="Last Name")
with gr.Row():
forbidden_names_input = gr.Textbox(label="FORBIDDEN NAMES (comma-separated)", value=",".join(FORBIDDEN_NAMES))
debug_checkbox = gr.Checkbox(label="Show debug output", value=True)
bible_name_first_checkbox = gr.Checkbox(label="Bible name first?", value=True)
generate_btn = gr.Button("🔀 Generate Names")
output_box = gr.Textbox(label="Generated Names", lines=10)
debug_box = gr.Textbox(label="Debug Output", lines=10)
generate_btn.click(
fn=generate_names,
inputs=[
n_slider,
sex_choice,
ssa_min_len,
ssa_max_len,
ssa_min_year,
ssa_max_year,
bible_len,
bible_max_len,
pop_low_slider,
pop_high_slider,
debug_checkbox,
last_name_input,
forbidden_names_input,
bible_name_first_checkbox,
],
outputs=[output_box, debug_box],
)
with gr.Tab("📈 Name Trends"):
gr.Markdown("# 📈 SSA Name Trends Over Time")
with gr.Row():
trend_names_input = gr.Textbox(label="Name(s) to plot (comma-separated)", placeholder="e.g. Zebediah, Remington, Jessca, Jielle")
with gr.Row():
trend_start_year = gr.Slider(1880, 2024, value=1950, step=1, label="Start Year")
trend_end_year = gr.Slider(1880, 2024, value=2024, step=1, label="End Year")
trend_logscale = gr.Checkbox(label="Log scale?", value=False)
plot_button = gr.Button("📊 Plot Trends")
plot_output = gr.Plot(label="Trend Plot")
table_output = gr.Dataframe(label="Underlying Data")
plot_button.click(
fn=plot_from_inputs,
inputs=[trend_names_input, trend_start_year, trend_end_year, trend_logscale],
outputs=[plot_output,table_output],
)
demo.launch()
|