#!/usr/bin/env python # coding: utf-8 # In[ ]: # import webrtcvad # import numpy as np # import librosa # def apply_vad(audio, sr, frame_duration=30, aggressiveness=3): # ''' # Voice Activity Detection (VAD): It is a technique used to determine whether a segment of audio contains speech. # This is useful in noisy environments where you want to filter out non-speech parts of the audio. # webrtcvad: This is a Python package based on the VAD from the WebRTC (Web Real-Time Communication) project. # It helps detect speech in small chunks of audio. # ''' # vad = webrtcvad.Vad() # audio_int16 = np.int16(audio * 32767) # frame_size = int(sr * frame_duration / 1000) # frames = [audio_int16[i:i + frame_size] for i in range(0, len(audio_int16), frame_size)] # voiced_audio = np.concatenate([frame for frame in frames if vad.is_speech(frame.tobytes(), sample_rate=sr)]) # voiced_audio = np.float32(voiced_audio) / 32767 # return voiced_audio # In[1]: # import webrtcvad # import numpy as np # import librosa # def apply_vad(audio, sr): # # Ensure that sample rate is supported by webrtcvad # if sr not in [8000, 16000, 32000, 48000]: # raise ValueError("Sample rate must be one of: 8000, 16000, 32000, or 48000 Hz") # vad = webrtcvad.Vad(2) # Aggressiveness mode: 0-3 # frame_duration_ms = 30 # Use 10ms, 20ms, or 30ms frames only # # Convert to PCM 16-bit and calculate frame length # audio_pcm16 = (audio * 32767).astype(np.int16) # frame_length = int(sr * frame_duration_ms / 1000) * 2 # 2 bytes per sample for 16-bit PCM # # Create frames ensuring correct frame size # frames = [ # audio_pcm16[i:i + frame_length].tobytes() # for i in range(0, len(audio_pcm16) - frame_length, frame_length) # ] # # Apply VAD # voiced_frames = [] # for frame in frames: # try: # if vad.is_speech(frame, sample_rate=sr): # voiced_frames.append(frame) # except Exception as e: # print(f"Error during VAD frame processing: {e}") # if not voiced_frames: # raise Exception("No voiced frames detected.") # # Concatenate voiced frames # voiced_audio = b''.join(voiced_frames) # return np.frombuffer(voiced_audio, dtype=np.int16) / 32767.0 # In[ ]: # import webrtcvad # import numpy as np # import librosa # def apply_vad(audio, sr, frame_duration=30, aggressiveness=3): # ''' # Voice Activity Detection (VAD): Detects speech in audio. # ''' # vad = webrtcvad.Vad(aggressiveness) # # Resample to 16000 Hz if not already (recommended for better compatibility) # if sr != 16000: # audio = librosa.resample(audio, orig_sr=sr, target_sr=16000) # sr = 16000 # # Convert to 16-bit PCM format expected by webrtcvad # audio_int16 = np.int16(audio * 32767) # # Ensure frame size matches WebRTC's expected lengths # frame_size = int(sr * frame_duration / 1000) # if frame_size % 2 != 0: # frame_size -= 1 # Make sure it's even to avoid processing issues # frames = [audio_int16[i:i + frame_size] for i in range(0, len(audio_int16), frame_size)] # # Filter out non-speech frames # voiced_frames = [] # for frame in frames: # if len(frame) == frame_size and vad.is_speech(frame.tobytes(), sample_rate=sr): # voiced_frames.append(frame) # # Concatenate the voiced frames # voiced_audio = np.concatenate(voiced_frames) # voiced_audio = np.float32(voiced_audio) / 32767 # return voiced_audio # In[3]: # import webrtcvad # import numpy as np # import librosa # def frame_generator(frame_duration_ms, audio, sample_rate): # """ # Generates audio frames from PCM audio data. # Takes the desired frame duration in milliseconds, the PCM data, and the sample rate. # """ # n = int(sample_rate * (frame_duration_ms / 1000.0) * 2) # Convert to byte length # offset = 0 # while offset + n < len(audio): # yield audio[offset:offset + n] # offset += n # def apply_vad(audio, sample_rate): # vad = webrtcvad.Vad() # vad.set_mode(1) # print("Applying VAD with mode:", 1) # print("Audio length:", len(audio), "bytes") # print("Sample rate:", sample_rate) # # Ensure mono and correct sample rate # if sample_rate != 16000: # print("Sample rate issue detected.") # raise ValueError("Sample rate must be 16000 Hz") # frames = frame_generator(30, audio, sample_rate) # frames = list(frames) # print("Number of frames:", len(frames)) # try: # segments = [frame for frame in frames if vad.is_speech(frame, sample_rate)] # if not segments: # raise Exception("No voiced frames detected.") # return b''.join(segments) # except Exception as e: # print(f"Error during VAD frame processing: {e}") # raise # In[5]: import torch import torchaudio from silero_vad import get_speech_timestamps, read_audio, save_audio def apply_silero_vad(audio_file_path): """ Applies Silero VAD to an audio file and returns the processed audio containing only the voiced segments. """ # Load the Silero VAD model model = torch.hub.load('snakers4/silero-vad', 'silero_vad', force_reload=True) # Define helper utilities manually def read_audio(path, sampling_rate=16000): wav, sr = torchaudio.load(path) if sr != sampling_rate: wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sampling_rate)(wav) return wav.squeeze(0) def save_audio(path, tensor, sampling_rate=16000): torchaudio.save(path, tensor.unsqueeze(0), sampling_rate) # Read the audio file wav = read_audio(audio_file_path, sampling_rate=16000) # Get timestamps for speech segments speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=16000) # If no speech detected, raise an exception if not speech_timestamps: raise Exception("No voiced frames detected using Silero VAD.") # Combine the voiced segments voiced_audio = torch.cat([wav[ts['start']:ts['end']] for ts in speech_timestamps]) # Save the processed audio if needed save_audio('processed_voiced_audio.wav', voiced_audio, sampling_rate=16000) # Convert to numpy bytes for further processing return voiced_audio.numpy().tobytes() # Example usage try: processed_audio = apply_silero_vad("path_to_your_audio.wav") print("VAD completed successfully!") except Exception as e: print(f"Error during Silero VAD processing: {e}") # In[ ]: