{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "5d909ed5-71b2-4586-96e1-f7820a8912ca", "metadata": {}, "outputs": [], "source": [ "# Function to apply wavelet denoising\n", "def wavelet_denoise(audio, wavelet='db1', level=1):\n", " coeffs = pywt.wavedec(audio, wavelet, mode='per')\n", " # Thresholding detail coefficients\n", " sigma = np.median(np.abs(coeffs[-level])) / 0.6745\n", " uthresh = sigma * np.sqrt(2 * np.log(len(audio)))\n", " coeffs[1:] = [pywt.threshold(i, value=uthresh, mode='soft') for i in coeffs[1:]]\n", " return pywt.waverec(coeffs, wavelet, mode='per')\n" ] }, { "cell_type": "code", "execution_count": null, "id": "02d29b97-fe10-4cd9-a176-0c7bf153a3f9", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 5 }