cdactvm commited on
Commit
fe9f5d4
·
verified ·
1 Parent(s): 848fa94

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -9
app.py CHANGED
@@ -47,14 +47,14 @@ processor.feature_extractor._processor_class = "Wav2Vec2ProcessorWithLM"
47
  # transcriber_hindi_lm = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new", tokenizer=processor_with_lm, feature_extractor=processor_with_lm.feature_extractor, decoder=processor_with_lm.decoder)
48
 
49
 
50
- def transcribe_tamil_new(audio):
51
- # # Process the audio file
52
- transcript = transcriber_taml_new(audio)
53
- text_value = transcript['text']
54
- processd_doubles=process_doubles(text_value)
55
- replaced_words = replace_words(processd_doubles)
56
- converted_text=text_to_int(replaced_words)
57
- return converted_text
58
 
59
 
60
  ###############################################
@@ -93,6 +93,27 @@ def Noise_cancellation_function(audio_file):
93
 
94
  #################################################
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  def sel_lng(lng, mic=None, file=None):
97
  if mic is not None:
98
  audio = mic
@@ -102,7 +123,7 @@ def sel_lng(lng, mic=None, file=None):
102
  return "You must either provide a mic recording or a file"
103
 
104
  if lng == "model_1":
105
- return Noise_cancellation_function(audio)
106
  # elif lng == "model_2":
107
  # return transcribe_hindi_new(audio)
108
  # elif lng== "model_3":
 
47
  # transcriber_hindi_lm = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new", tokenizer=processor_with_lm, feature_extractor=processor_with_lm.feature_extractor, decoder=processor_with_lm.decoder)
48
 
49
 
50
+ # def transcribe_tamil_new(audio):
51
+ # # # Process the audio file
52
+ # transcript = transcriber_taml_new(audio)
53
+ # text_value = transcript['text']
54
+ # processd_doubles=process_doubles(text_value)
55
+ # replaced_words = replace_words(processd_doubles)
56
+ # converted_text=text_to_int(replaced_words)
57
+ # return converted_text
58
 
59
 
60
  ###############################################
 
93
 
94
  #################################################
95
 
96
+ # Function to handle speech recognition
97
+ def recognize_speech(audio_file):
98
+ audio, sr = librosa.load(audio_file, sr=16000)
99
+ audio = high_pass_filter(audio, sr)
100
+ audio = apply_wiener_filter(audio)
101
+ denoised_audio = wavelet_denoise(audio)
102
+ result = asr_model(denoised_audio)
103
+ text_value = result['text']
104
+ cleaned_text = text_value.replace("<s>", "")
105
+ print(cleaned_text)
106
+ converted_to_list = convert_to_list(cleaned_text, text_to_list())
107
+ print(converted_to_list)
108
+ processed_doubles = process_doubles(converted_to_list)
109
+ print(processed_doubles)
110
+ replaced_words = replace_words(processed_doubles)
111
+ print(replaced_words)
112
+ converted_text = text_to_int(replaced_words)
113
+ print(converted_text)
114
+ return converted_text
115
+
116
+
117
  def sel_lng(lng, mic=None, file=None):
118
  if mic is not None:
119
  audio = mic
 
123
  return "You must either provide a mic recording or a file"
124
 
125
  if lng == "model_1":
126
+ return recognize_speech(audio)
127
  # elif lng == "model_2":
128
  # return transcribe_hindi_new(audio)
129
  # elif lng== "model_3":