cdactvm commited on
Commit
b161c5a
·
verified ·
1 Parent(s): f155e22

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -40
app.py CHANGED
@@ -29,10 +29,8 @@ from wienerFilter import wiener_filter
29
  from highPassFilter import high_pass_filter
30
  from waveletDenoise import wavelet_denoise
31
 
32
-
33
-
34
  transcriber_hindi_new = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new")
35
- transcriber_hindi_old = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new")
36
  processor = AutoProcessor.from_pretrained("cdactvm/w2v-bert-tamil_new")
37
  vocab_dict = processor.tokenizer.get_vocab()
38
  sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}
@@ -40,16 +38,16 @@ decoder = build_ctcdecoder(
40
  labels=list(sorted_vocab_dict.keys()),
41
  kenlm_model_path="lm.binary",
42
  )
43
- processor_with_lm = Wav2Vec2ProcessorWithLM(
44
- feature_extractor=processor.feature_extractor,
45
- tokenizer=processor.tokenizer,
46
- decoder=decoder
47
- )
48
  processor.feature_extractor._processor_class = "Wav2Vec2ProcessorWithLM"
49
- transcriber_hindi_lm = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new", tokenizer=processor_with_lm, feature_extractor=processor_with_lm.feature_extractor, decoder=processor_with_lm.decoder)
50
 
51
 
52
- def transcribe_hindi_new(audio):
53
  # # Process the audio file
54
  transcript = transcriber_hindi_new(audio)
55
  text_value = transcript['text']
@@ -58,24 +56,6 @@ def transcribe_hindi_new(audio):
58
  converted_text=text_to_int(replaced_words)
59
  return converted_text
60
 
61
- def transcribe_hindi_lm(audio):
62
- # # Process the audio file
63
- transcript = transcriber_hindi_lm(audio)
64
- text_value = transcript['text']
65
- processd_doubles=process_doubles(text_value)
66
- replaced_words = replace_words(processd_doubles)
67
- converted_text=text_to_int(replaced_words)
68
- return converted_text
69
-
70
- def transcribe_hindi_old(audio):
71
- # # Process the audio file
72
- transcript = transcriber_hindi_old(audio)
73
- text_value = transcript['text']
74
- cleaned_text=text_value.replace("<s>","")
75
- processd_doubles=process_doubles(cleaned_text)
76
- replaced_words = replace_words(processd_doubles)
77
- converted_text=text_to_int(replaced_words)
78
- return converted_text
79
 
80
  ###############################################
81
  # implementation of noise reduction techniques.
@@ -131,18 +111,6 @@ def sel_lng(lng, mic=None, file=None):
131
  return Noise_cancellation_function(audio)
132
 
133
 
134
- # demo=gr.Interface(
135
- # transcribe,
136
- # inputs=[
137
- # gr.Audio(sources=["microphone","upload"], type="filepath"),
138
- # ],
139
- # outputs=[
140
- # "textbox"
141
- # ],
142
- # title="Automatic Speech Recognition",
143
- # description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
144
- # ).launch()
145
-
146
  demo=gr.Interface(
147
  fn=sel_lng,
148
 
 
29
  from highPassFilter import high_pass_filter
30
  from waveletDenoise import wavelet_denoise
31
 
 
 
32
  transcriber_hindi_new = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new")
33
+ # transcriber_hindi_old = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new")
34
  processor = AutoProcessor.from_pretrained("cdactvm/w2v-bert-tamil_new")
35
  vocab_dict = processor.tokenizer.get_vocab()
36
  sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}
 
38
  labels=list(sorted_vocab_dict.keys()),
39
  kenlm_model_path="lm.binary",
40
  )
41
+ # processor_with_lm = Wav2Vec2ProcessorWithLM(
42
+ # feature_extractor=processor.feature_extractor,
43
+ # tokenizer=processor.tokenizer,
44
+ # decoder=decoder
45
+ # )
46
  processor.feature_extractor._processor_class = "Wav2Vec2ProcessorWithLM"
47
+ # transcriber_hindi_lm = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new", tokenizer=processor_with_lm, feature_extractor=processor_with_lm.feature_extractor, decoder=processor_with_lm.decoder)
48
 
49
 
50
+ def transcribe_tamil_new(audio):
51
  # # Process the audio file
52
  transcript = transcriber_hindi_new(audio)
53
  text_value = transcript['text']
 
56
  converted_text=text_to_int(replaced_words)
57
  return converted_text
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
  ###############################################
61
  # implementation of noise reduction techniques.
 
111
  return Noise_cancellation_function(audio)
112
 
113
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  demo=gr.Interface(
115
  fn=sel_lng,
116