cdactvm commited on
Commit
82a60a6
·
verified ·
1 Parent(s): 2fe2a1d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -15
app.py CHANGED
@@ -32,22 +32,7 @@ from scipy.signal import butter, lfilter, wiener
32
 
33
  asr_model = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new")
34
 
35
- def createlex(filename):
36
-
37
-
38
- # Initialize an empty dictionary
39
- data_dict = {}
40
 
41
- # Open the file and read it line by line
42
- with open(filename, "r", encoding="utf-8") as f:
43
- for line in f:
44
- # Strip newline characters and split by tab
45
- key, value = line.strip().split("\t")
46
- # Add to dictionary
47
- data_dict[key] = value
48
- return data_dict
49
-
50
- lex=createlex("num_words_ta.txt")
51
  # Function to apply a high-pass filter
52
  def high_pass_filter(audio, sr, cutoff=300):
53
  nyquist = 0.5 * sr
@@ -70,12 +55,28 @@ def apply_wiener_filter(audio):
70
 
71
 
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  def addnum(inlist):
74
  sum=0
75
  for num in inlist:
76
  sum+=int(num)
77
 
78
  return sum
 
79
  from rapidfuzz import process
80
  def get_val(word, lexicon):
81
  threshold = 80 # Minimum similarity score
 
32
 
33
  asr_model = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new")
34
 
 
 
 
 
 
35
 
 
 
 
 
 
 
 
 
 
 
36
  # Function to apply a high-pass filter
37
  def high_pass_filter(audio, sr, cutoff=300):
38
  nyquist = 0.5 * sr
 
55
 
56
 
57
 
58
+ def createlex(filename):
59
+ # Initialize an empty dictionary
60
+ data_dict = {}
61
+
62
+ # Open the file and read it line by line
63
+ with open(filename, "r", encoding="utf-8") as f:
64
+ for line in f:
65
+ # Strip newline characters and split by tab
66
+ key, value = line.strip().split("\t")
67
+ # Add to dictionary
68
+ data_dict[key] = value
69
+ return data_dict
70
+
71
+ lex=createlex("num_words_ta.txt")
72
+
73
  def addnum(inlist):
74
  sum=0
75
  for num in inlist:
76
  sum+=int(num)
77
 
78
  return sum
79
+
80
  from rapidfuzz import process
81
  def get_val(word, lexicon):
82
  threshold = 80 # Minimum similarity score